Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Haematol ; 10(3): e191-e202, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36764323

ABSTRACT

BACKGROUND: CYAD-01 is an autologous chimeric antigen receptor (CAR) T-cell product based on the natural killer (NK) group 2D (NKG2D) receptor, which binds eight ligands that are overexpressed in a wide range of haematological malignancies but are largely absent on non-neoplastic cells. Initial clinical evaluation of a single infusion of CYAD-01 at a low dose in patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, and multiple myeloma supported the feasibility of the approach and prompted further evaluation of CYAD-01. The aim of the present study was to determine the safety and recommended phase 2 dosing of CYAD-01 administered without preconditioning or bridging chemotherapy. METHODS: The multicentre THINK study was an open-label, dose-escalation, phase 1 study for patients with relapsed or refractory acute myeloid leukaemia, myelodysplastic syndromes, or multiple myeloma, after at least one previous line of therapy. Patients were recruited from five hospitals in the USA and Belgium. The dose-escalation segment evaluated three dose levels: 3 × 108 (dose level one), 1 × 109 (dose level two), and 3 × 109 (dose level three) cells per infusion with a 3 + 3 Fibonacci study design using a schedule of three infusions at 2-week intervals followed by potential consolidation treatment consisting of three additional infusions. The occurrence of dose-limiting toxicities post-CYAD-01 infusion was assessed as the primary endpoint in the total treated patient population. The trial was registered with ClinicalTrials.gov, NCT03018405, and EudraCT, 2016-003312-12, and has been completed. FINDINGS: Between Feb 6, 2017, and Oct 9, 2018, 25 patients were registered in the haematological dose-escalation segment. Seven patients had manufacturing failure for insufficient yield and two had screening failure. 16 patients were treated with CYAD-01 (three with multiple myeloma and three with acute myeloid leukaemia at dose level one; three with acute myeloid leukaemia at dose level two; and six with acute myeloid leukaemia and one with myelodysplastic syndromes at dose level three). Median follow-up was 118 days (IQR 46-180). Seven patients (44%) had grade 3 or 4 treatment-related adverse events. In total, five patients (31%) had grade 3 or 4 cytokine release syndrome across all dose levels. One dose-limiting toxicity of cytokine release syndrome was reported at dose level three. No treatment-related deaths occurred, and the maximum tolerated dose was not reached. Three (25%) of 12 evaluable patients with relapsed or refractory acute myeloid leukaemia or myelodysplastic syndromes had an objective response. Among responders, two patients with acute myeloid leukaemia proceeded to allogeneic haematopoietic stem-cell transplantation (HSCT) after CYAD-01 treatment, with durable ongoing remissions (5 and 61 months). INTERPRETATION: Treatment with a multiple CYAD-01 infusion schedule without preconditioning is well tolerated and shows anti-leukaemic activity, although without durability outside of patients bridged to allogeneic HSCT. These phase 1 data support the proof-of-concept of targeting NKG2D ligands by CAR T-cell therapy. Further clinical studies with NKG2D-based CAR T-cells are warranted, potentially via combinatorial antigen targeted approaches, to improve anti-tumour activity. FUNDING: Celyad Oncology.


Subject(s)
Leukemia, Myeloid, Acute , Multiple Myeloma , Myelodysplastic Syndromes , Humans , NK Cell Lectin-Like Receptor Subfamily K/therapeutic use , Immunotherapy, Adoptive , Cytokine Release Syndrome , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy
2.
BioDrugs ; 33(5): 515-537, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31363930

ABSTRACT

Chimeric antigen receptor-T cells (CAR-Ts) are an exciting new cancer treatment modality exemplified by the recent regulatory approval of two CD19-targeted CAR-T therapies for certain B cell malignancies. However, this success in the hematological setting has yet to translate to a significant level of objective clinical responses in the solid tumor setting. The reason for this lack of translation undoubtedly lies in the substantial challenges raised by solid tumors to all therapies, including CAR-T, that differ from B cell malignancies. For instance, intravenously infused CAR-Ts are likely to make rapid contact with cancerous B cells since both tend to reside in the same vascular compartments within the body. By contrast, solid cancers tend to form discrete tumor masses with an immune-suppressive tumor microenvironment composed of tumor cells and non-tumor stromal cells served by abnormal vasculature that restricts lymphocyte infiltration and suppresses immune function, expansion, and persistence. Moreover, the paucity of uniquely and homogeneously expressed tumor antigens and inherent plasticity of cancer cells provide major challenges to the specificity, potency, and overall effectiveness of CAR-T therapies. This review focuses on the major preclinical and clinical strategies currently being pursued to tackle these challenges in order to drive the success of CAR-T therapy against solid tumors.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Neoplasms/therapy , Receptors, Chimeric Antigen/therapeutic use , Tumor Microenvironment/immunology , Animals , Cell- and Tissue-Based Therapy/adverse effects , Clinical Trials as Topic , Humans , Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
3.
Ann Hematol ; 97(3): 387-400, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29282494

ABSTRACT

Although immunomodulatory drugs, alkylating agents, corticosteroids, protease inhibitors, and therapeutic monoclonal antibodies improve multiple myeloma outcomes, treatment burden is still an issue. Neutropenia is a known complication of cytotoxic cancer therapy and is often associated with infections; it is an important consideration in myeloma given the fact that patients often have a weakened immune system. The risk of febrile neutropenia increases with severe and persisting neutropenia. Recombinant granulocyte colony-stimulating factors (G-CSFs) are commonly used to reduce the incidence, duration, and severity of febrile neutropenia. Here, we review the risk and management of neutropenia associated with new and commonly used anti-myeloma agents. Few papers report the use of G-CSF in patients with multiple myeloma receiving anti-cancer treatments, and fewer describe whether G-CSF was beneficial. None of the identified studies reported G-CSF primary prophylaxis. Further studies are warranted to evaluate the need for G-CSF prophylaxis in multiple myeloma. Prophylaxis may be particularly useful in patients at high risk of prolonged severe neutropenia.


Subject(s)
Granulocyte Colony-Stimulating Factor/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/epidemiology , Neutropenia/epidemiology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Granulocyte Colony-Stimulating Factor/adverse effects , Humans , Incidence , Neutropenia/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...