Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 122(6): 063602, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822072

ABSTRACT

Bosonic interference is a fundamental physical phenomenon, and it is believed to lie at the heart of quantum computational advantage. It is thus necessary to develop practical tools to witness its presence, both for a reliable assessment of a quantum source and for fundamental investigations. Here we describe how linear interferometers can be used to unambiguously witness genuine n-boson indistinguishability. The amount of violation of the proposed witnesses bounds the degree of multiboson indistinguishability, for which we also provide a novel intuitive model using set theory. We experimentally implement this test to bound the degree of three-photon indistinguishability in states we prepare using parametric down-conversion. Our approach results in a convenient tool for practical photonic applications, and may inspire further fundamental advances based on the operational framework we adopt.

2.
Rep Prog Phys ; 82(1): 016001, 2019 01.
Article in English | MEDLINE | ID: mdl-30421725

ABSTRACT

Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

3.
Sci Bull (Beijing) ; 63(22): 1470-1478, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-36658828

ABSTRACT

Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity. Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources. Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons. In particular, we show that so-called Sylvester interferometers are near-optimal for this task. By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required. Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3D integrated circuits in the single- and multiple-source cases. We then discuss the extension of this approach to a larger number of photons and modes. These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.

4.
Sci Rep ; 7(1): 15133, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123136

ABSTRACT

Photonic platforms represent a promising technology for the realization of several quantum communication protocols and for experiments of quantum simulation. Moreover, large-scale integrated interferometers have recently gained a relevant role in quantum computing, specifically with Boson Sampling devices and the race for quantum supremacy. Indeed, various linear optical schemes have been proposed for the implementation of unitary transformations, each one suitable for a specific task. Notwithstanding, so far a comprehensive analysis of the state of the art under broader and realistic conditions is still lacking. In the present work we fill this gap, providing in a unified framework a quantitative comparison of the three main photonic architectures, namely the ones with triangular and square designs and the so-called fast transformations. All layouts have been analyzed in presence of losses and imperfect control over the internal reflectivities and phases, showing that the square design outperforms the triangular scheme in most operational conditions. Our results represent a further step ahead towards the implementation of quantum information protocols on large-scale integrated photonic devices.

5.
Nat Commun ; 7: 10469, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26843135

ABSTRACT

The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms.

6.
Sci Adv ; 1(3): e1400255, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26601164

ABSTRACT

Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

SELECTION OF CITATIONS
SEARCH DETAIL