Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 14(1): 1329, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225375

ABSTRACT

This investigation delves into the complex interaction at metal-semiconductor interfaces, highlighting the magnetic proximity effect in Ni/Si interfaces through systematic X-ray magnetic circular dichroism (XMCD) studies at Ni and Si edges. We analyzed two Ni/Si heterostructures with differing semiconductor doping, uncovering a magnetic proximity effect manifesting as equilibrium magnetization in the semiconductor substrate induced by the adjacent Ni layer. Our results display distinct magnetization signs corresponding to the doping levels: low-doped samples show parallel alignment to the Ni layer, while high-doped samples align antiparallel, indicating a nuanced interplay of underlying magnetization mechanisms. These findings pinpoint the roles of electron tunneling and exchange splitting modification in the magnetization behavior. The study enriches the understanding of ferromagnetic-semiconductor interface behavior, setting a precedent for the design of advanced spintronic devices that leverage the nuanced magnetic properties of these hybrid systems.

2.
Struct Dyn ; 8(3): 034304, 2021 May.
Article in English | MEDLINE | ID: mdl-34169118

ABSTRACT

Here, we report on the conceptual design, the hardware realization, and the first experimental results of a novel and compact x-ray polarimeter capable of a single-pulse linear polarization angle detection in the extreme ultraviolet photon energy range. The polarimeter is tested by performing time resolved pump-probe experiments on a Ni80Fe20 Permalloy film at the M2,3 Ni edge at an externally seeded free-electron laser source. Comparison with similar experiments reported in the literature shows the advantages of our approach also in view of future experiments.

3.
ACS Nano ; 13(9): 10481-10489, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31469534

ABSTRACT

We report the discovery of a temperature-induced phase transition between the α and ß structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the ß phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and ß-antimonene only slightly differ, the ß phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.

4.
Nano Lett ; 16(3): 1808-17, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26829243

ABSTRACT

The possibility to intercalate noble gas atoms below epitaxial graphene monolayers coupled with the instability at high temperature of graphene on the surface of certain metals has been exploited to produce Ar-filled graphene nanosized blisters evenly distributed on the bare Ni(111) surface. We have followed in real time the self-assembling of the nanoblisters during the thermal annealing of the Gr/Ni(111) interface loaded with Ar and characterized their morphology and structure at the atomic scale. The nanoblisters contain Ar aggregates compressed at high pressure arranged below the graphene monolayer skin that is decoupled from the Ni substrate and sealed only at the periphery through stable C-Ni bonds. Their in-plane truncated triangular shapes are driven by the crystallographic directions of the Ni surface. The nonuniform strain revealed along the blister profile is explained by the inhomogeneous expansion of the flexible graphene lattice that adjusts to envelop the Ar atom stacks.

5.
Phys Rev Lett ; 115(2): 026102, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26207485

ABSTRACT

The modelization of silicene on Ag(111) is generally based on the assumption of a complete immiscibility between silicon and silver. However, there are recent reports that growth occurs inside the first layer of the Ag(111) terraces rather than on top of them. Here, we report on a combined density functional theory and scanning tunneling microscopy study unveiling the basic exchange mechanism between Si and the topmost layer Ag atoms and modeling the nucleation process. Our findings demonstrate that a strong Si-Ag interaction must be considered to properly describe the Si/Ag(111) interface.

6.
Phys Rev Lett ; 109(3): 036102, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861874

ABSTRACT

Further insight into the dissociative adsorption of NH3 on Si(001) has been obtained using a combined computational and experimental approach. A novel route leading to the dissociation of the chemisorbed NH3 is proposed, based on H-bonding interactions between the gas phase and the chemisorbed NH3 molecules. Our model, complemented by synchrotron radiation photoelectron spectroscopy measurements, demonstrates that the low temperature dissociation of molecular chemisorbed NH3 is driven by the continuous flux of ammonia molecules from the gas phase.

7.
J Phys Chem B ; 115(18): 5103-12, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21370829

ABSTRACT

Resonant Auger spectra of ethene molecule have been measured with vibrational resolution at several excitation energies in the region of the C1s(-1)1b(2g)(π*) resonance. The main features observed in the experiment have been assigned and are accurately interpreted on the basis of ab initio multimode calculations. Theory explains the extended vibrational distribution of the resonant Auger spectra and its evolution as a function of the excitation energy by multimode excitation during the scattering process. As a result, the resonant Auger spectra display two qualitatively different spectral features following the Raman and non-Raman dispersion laws, respectively. Calculations show that two observed thresholds of formation of non-Raman spectral bands are related to the "double-edge" structure of the X-ray absorption spectrum.


Subject(s)
Ethylenes/chemistry , Thermodynamics , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...