Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Pathol ; 160: 23-33, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29729718

ABSTRACT

Myxomatous mitral valve disease is the most common cardiac disease of the dog, but examination of the associated cellular and molecular events has relied on the use of cadaveric valve tissue, in which functional studies cannot be undertaken. The aim of this study was to develop a three-dimensional (3D) cell co-culture model as an experimental platform to examine disease pathogenesis. Mitral valve interstitial (VIC) and endothelial (VEC) cells were cultured from normal and diseased canine (VIC only) valves. VICs were embedded in a fibrin-based hydrogel matrix and one surface was lined with VECs. The 3D static cultures (constructs) were examined qualitatively and semiquantitatively by light microscopy, immunofluorescence microscopy and protein immunoblotting. Some constructs were manipulated and the endothelium damaged, and the response examined. The construct gross morphology and histology demonstrated native tissue-like features and comparable expression patterns of cellular (α-smooth muscle actin [SMA] and embryonic smooth muscle myosin heavy chain [SMemb]) and extracellular matrix associated markers (matrix metalloproteinase [MMP]-1 and MMP-3), reminiscent of diseased valves. There were no differences between constructs containing normal valve VICs and VECs (type 1) and those containing diseased valve VICs and normal valve VECs (type 2). Mechanical manipulation and endothelial damage (type 3) tended to decrease α-SMA and SMemb expression, suggesting reversal of VIC activation, but with retention of SMemb+ cells adjacent to the wounded endothelium consistent with response to injury. Fibrin-based 3D mitral valve constructs can be produced using primary cell cultures derived from canine mitral valves, and show a phenotype reminiscent of diseased valves. The constructs demonstrate a response to endothelial damage indicating their utility as experimental platforms.


Subject(s)
Cell Culture Techniques , Dog Diseases , Mitral Valve , Tissue Engineering/methods , Animals , Coculture Techniques , Dogs
2.
Vet J ; 204(1): 32-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25747697

ABSTRACT

Valve interstitial cells (VICs) have an important role in the aetiopathogenesis of myxomatous mitral valve disease (MMVD) in the dog. Furthermore, there is evidence that valve endothelial cells (VECs) also contribute to disease development. In addition to examining native valve tissue to understand MMVD, another strategy is to separately examine VIC and VEC biology under in vitro culture conditions. The aim of this study was to isolate and characterise canine mitral VICs and VECs from normal dog valves using a combination of morphology, immunohistochemistry and reverse transcription PCR (RT-PCR). Canine mitral VECs and VICs were isolated and cultured in vitro. The two cell populations exhibited different morphologies and growth patterns. VECs, but not VICs, expressed the endothelial markers, platelet endothelial cell adhesion molecule (PECAM-1 or CD31) and acetylated low density lipoprotein (Dil-Ac-LDL). Both VECs and VICs expressed vimentin and embryonic non-smooth muscle myosin heavy chain (SMemb), an activated mesenchymal cell marker. The myofibroblast marker, alpha smooth muscle actin (α-SMA), was detected at the mRNA level in both VEC and VIC cultures, but only at the protein level in VIC cultures. The morphological heterogeneity and expression of non-endothelial phenotypic markers in VEC cultures suggested that a mixture of cell types was present, which might be due to cell contamination and/or endothelial-mesenchymal transition (EndoMT). The use of a specific endothelial culture medium for primary VEC cultures enhanced the endothelial properties of the cells and reduced α-SMA and SMemb expression.


Subject(s)
Dogs , Endothelial Cells/physiology , Mitral Valve/cytology , Animals , Cells, Cultured , Culture Media , Female , Male
3.
Ann Biomed Eng ; 41(5): 883-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23307024

ABSTRACT

In the field of tissue engineering, there is an increasing demand for non-destructive methods to quantify the synthesis of extracellular matrix (ECM) components such as collagens, elastin or sulphated glycosaminoglycans (sGAGs) in vitro as a quality control before clinical use. In this study, procollagen I carboxyterminal peptide (PICP), procollagen III aminoterminal peptide (PIIINP), tropoelastin and sGAGs are investigated for their potential use as non-destructive markers in culture medium of statically cultivated cell-seeded fibrin gels. Measurement of PICP as marker for type I collagen synthesis, and PIIINP as marker of type III collagen turnover, correlated well with the hydroxyproline content of the fibrin gels, with a Pearson correlation coefficient of 0.98 and 0.97, respectively. The measurement of tropoelastin as marker of elastin synthesis correlated with the amount of elastin retained in fibrin gels with a Pearson correlation coefficient of 0.99. sGAGs were retained in fibrin gels, but were not detectable in culture medium at any time of measurement. In conclusion, this study demonstrates the potential of PICP and tropoelastin as non-destructive culture medium markers for collagen and elastin synthesis. To our knowledge, this is the first study in cardiovascular tissue engineering investigating the whole of here proposed biomarkers of ECM synthesis to monitor the maturation process of developing tissue non-invasively, but for comprehensive assessment of ECM development, these biomarkers need to be investigated in further studies, employing dynamic cultivation conditions and more complex tissue constructs.


Subject(s)
Blood Vessel Prosthesis , Extracellular Matrix Proteins/analysis , Extracellular Matrix/chemistry , Tissue Engineering/methods , Biomarkers/analysis , Biomarkers/chemistry , Biomarkers/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/metabolism , Fibroblasts/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Humans
4.
Cells Tissues Organs ; 183(1): 12-23, 2006.
Article in English | MEDLINE | ID: mdl-16974091

ABSTRACT

The advance of mitral valve repair techniques through tissue engineering is impeded by the lack of information regarding the cellular and extracellular components of the mitral valve. The present study aims to expand our understanding of the mitral valve structure by analysing the synthesis of extracellular matrix (ECM) proteins and the expression of nitric oxide synthase (NOS). Valvular endothelial cells (VECs) and valvular interstitial cells (VICs) were isolated from porcine mitral valves. Immunochemical staining of ECM components, including type I, II, III, IV and V collagen, laminin, fibronectin, elastin and chondroitin sulphate (CS), was performed on both mitral valve tissue and cell cultures. Reverse transcription polymerase chain reaction and immunochemistry were used to analyse NOS expression in native valve and in culture. Both VECs and VICs synthesised the basement membrane components, laminin and type IV collagen both in vivo and in vitro, amongst other fibrous ECM proteins. Synthesis of type I collagen and CS was absent in VEC cultures. Each cell type had a characteristic profile of NOS expression. VECs synthesised endothelial NOS both in vivo and in vitro, with a minority of VICs expressing neuronal NOS in vitro. The present study reports newly recognised aspects of the mitral valve structure and the in vitro behaviour of mitral valve cell populations based on ECM synthesis and NOS expression. The presented profiles can be used as base tools for the generation of data necessary for the selection of ideal cell sources and for the design of appropriate scaffolds for the development of effective tissue-engineered mitral valves.


Subject(s)
Extracellular Matrix/metabolism , Mitral Valve/metabolism , Tissue Engineering/methods , Actins/genetics , Animals , Cells, Cultured , Chondroitin Sulfates/analysis , Collagen/analysis , Elastin/analysis , Endothelial Cells/metabolism , Female , Fibronectins/analysis , Humans , Immunohistochemistry , Laminin/analysis , Male , Mice , Mitral Valve/cytology , Nitric Oxide Synthase/analysis , Nitric Oxide Synthase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Swine , Vimentin/genetics
5.
Eur Cell Mater ; 6: 28-45; discussion 45, 2003 Nov 20.
Article in English | MEDLINE | ID: mdl-14639553

ABSTRACT

Conventional replacement therapies for heart valve disease are associated with significant drawbacks. The field of tissue engineering has emerged as an exciting alternative in the search for improved heart valve replacement structures. One of the principles behind this concept is the transplantation of living elements, embedded in a suitable scaffold material, to the diseased site where the structure becomes integrated with patients' tissue to restore natural function. Significant progress has been made in the last ten years in the development of a living artificial heart valve alternative (LAHVA), with the identification of potential replacement sources for valve cells, scaffolds to maintain the cells in a three-dimensional environment, and signals to promote tissue development. This review addresses the need for a tissue-engineered alternative to current prostheses and provides a detailed account of normal heart valve structure--the blueprint for LAHVA fabrication. The research efforts to create a viable LAHVA, including recent developments, are discussed. Particular attention is focused on the choice of cell source for LAHVA construction, the use of biodegradable natural and synthetic polymeric scaffolds as extracellular matrix derivatives, and exogenous stimulation of tissue growth. The critical challenges involved in LAHVA development and possible future areas of investigation are also discussed.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Absorbable Implants , Biopolymers , Heart Valve Diseases/surgery , Heart Valves/anatomy & histology , Heart Valves/cytology , Humans , Signal Transduction , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...