Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Oncogene ; 27(39): 5182-94, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18469852

ABSTRACT

Chemoresistance represents a major problem in the treatment of many malignancies. Overcoming this obstacle will require improved understanding of the mechanisms responsible for this phenomenon. The progenitor cell marker NG2/melanoma proteoglycan (MPG) is aberrantly expressed by various tumors, but its role in cell death signaling and its potential as a therapeutic target are largely unexplored. We have assessed cytotoxic drug-induced cell death in glioblastoma spheroids from 15 patients, as well as in five cancer cell lines that differ with respect to NG2/MPG expression. The tumors were treated with doxorubicin, etoposide, carboplatin, temodal, cisplatin and tumor necrosis factor (TNF)alpha. High NG2/MPG expression correlated with multidrug resistance mediated by increased activation of alpha3beta1 integrin/PI3K signaling and their downstream targets, promoting cell survival. NG2/MPG knockdown with shRNAs incorporated into lentiviral vectors attenuated beta1 integrin signaling revealing potent antitumor effects and further sensitized neoplastic cells to cytotoxic treatment in vitro and in vivo. Thus, as a novel regulator of the antiapoptotic response, NG2/MPG may represent an effective therapeutic target in several cancer subtypes.


Subject(s)
Antigens/physiology , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm , Glioma/metabolism , Integrins/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proteoglycans/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Apoptosis/physiology , Brain Neoplasms/pathology , Enzyme Activation , Glioma/pathology , Humans , Tumor Necrosis Factor-alpha/physiology
2.
J Mol Biol ; 314(2): 279-91, 2001 Nov 23.
Article in English | MEDLINE | ID: mdl-11718561

ABSTRACT

The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.


Subject(s)
Biopterins/analogs & derivatives , Biopterins/metabolism , Catalytic Domain , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Binding Sites , Biopterins/chemistry , Catalysis , Crystallography, X-Ray , Humans , Hydrogen Bonding , Iron/metabolism , Ligands , Models, Molecular , Mutation , Oxidation-Reduction , Phenylalanine Hydroxylase/genetics , Protein Conformation , Water/chemistry , Water/metabolism
3.
Anal Biochem ; 294(2): 95-101, 2001 Jul 15.
Article in English | MEDLINE | ID: mdl-11444803

ABSTRACT

In the present study the optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the reversible binding of the pterin cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and l-phenylalanine (l-Phe) to human phenylalanine hydroxylase (hPAH). When BH(4) (241 Da) was injected over the sensor chip with immobilized tetrameric wt-hPAH a positive DeltaRU response was observed with a square-wave type of sensorgram and a saturable response (about 25 RU/(pmol subunit/mm(2)) with a [S](0.5) value of 5.6 +/- 0.8 microM for the pterin cofactor. The rapid on-and-off rates were, however, not possible to determine. By contrast, when l-Phe (165 Da) was injected a time-dependent increase in RU (up to about 3 min) and a much higher saturable DeltaRU response (about 75 RU/(pmol subunit/mm(2)) at 2 mM l-Phe) than expected (i.e., <5 RU/(pmol subunit/mm(2))) from the low molecular mass of l-Phe were observed in the sensorgram. The half-time for the on-and-off rates were 6 +/- 2 and 9 +/- 1 s, respectively, at 2 mM l-Phe. The steady-state (apparent equilibrium) response revealed a hyperbolic concentration dependence with a [S](0.5) value of 98 +/- 7 microM. The [S](0.5) values of both pterin cofactor and l-Phe were lower than those determined by steady-state enzyme kinetic analysis. Evidence is presented that the DeltaRU response to l-Phe is accounted for by the global conformational transition which occurs in the enzyme upon l-Phe binding, i.e., by the slow reversible transition from a low activity state ("T"-state) to a high activity state ("R"-state) characteristic of this hysteretic enzyme.


Subject(s)
Biopterins/analogs & derivatives , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Surface Plasmon Resonance , Biopterins/metabolism , Catalysis , Enzyme Activation , Enzymes, Immobilized/metabolism , Humans , Kinetics , Phenylalanine/metabolism , Protein Binding , Protein Structure, Quaternary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
4.
IUBMB Life ; 51(2): 99-104, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11463171

ABSTRACT

Administration of the fatty acid analogue tetradecylthioacetic acid (TTA) to rodents up-regulates peroxisomal and mitochondrial lipid-metabolizing enzymes and induces a proliferation of these organelles in hepatocytes. We show here that male NMRI mice fed a diet containing 0.3% (w/w) TTA revealed a transient two-fold increase in the incorporation of [3H]thymidine into the liver mtDNA followed by a 1.6-fold increase in the content of mtDNA. In addition, a transient three-fold increase in the mitochondrial thymidine kinase (TK2) activity and a slight increase in the DNA polymerase gamma activity was observed, indicating that the TTA induced mitochondrial proliferation is linked to an up-regulation of the mitochondrial thymidine kinase activity.


Subject(s)
Mitochondria, Liver/drug effects , Thymidine Kinase/metabolism , Up-Regulation , Animals , Base Sequence , Body Weight/drug effects , DNA Polymerase gamma , DNA Primers , DNA Replication , DNA, Mitochondrial/biosynthesis , DNA-Directed DNA Polymerase/metabolism , Male , Mice , Mitochondria, Liver/enzymology , Mitochondria, Liver/physiology , Organ Size/drug effects , Sulfides/pharmacology
5.
Biochim Biophys Acta ; 1547(2): 379-86, 2001 Jun 11.
Article in English | MEDLINE | ID: mdl-11410294

ABSTRACT

Phenylalanine hydroxylase (PAH, EC 1.14.16.1) is a highly regulated liver enzyme which catalyses the conversion of L-phenylalanine to L-tyrosine, the rate-limiting step in the catabolic pathway of this amino acid. Among the approx. 400 different mutations of human (h) PAH, frequently associated with the metabolic disease phenylketonuria, a low stability is a characteristic property when expressed in eucaryotic cells. In this study, the pathway of hPAH degradation is addressed with focus on its conjugation with polyubiquitin chains catalysed by the ubiquitin-conjugating enzyme system (E1, E2, E3) isolated from rat liver by covalent affinity chromatography on ubiquitin-Sepharose. In the reconstituted in vitro ubiquitination assay, the enzyme system catalysed both the formation of free polyubiquitin chains and the polyubiquitination of wild-type (wt) hPAH and its 'catalytic domain' (DeltaN102/DeltaC24-hPAH) as visualized by two-dimensional electrophoresis. The ubiquitination of wt-PAH may play a role in the degradation of this liver enzyme notably of its many unstable disease-associated mutant forms. The present approach may also have a more general application in the study of liver proteins as possible targets for ubiquitination.


Subject(s)
Biopolymers/chemistry , Liver/enzymology , Phenylalanine Hydroxylase/chemistry , Ubiquitins/chemistry , Animals , Biopolymers/metabolism , Catalysis , Models, Chemical , Phenylalanine Hydroxylase/metabolism , Polyubiquitin , Rats , Ubiquitins/metabolism
6.
J Biol Chem ; 276(25): 22850-6, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11301319

ABSTRACT

Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4)) and non-heme iron-dependent enzyme that hydroxylates L-Phe to L-Tyr. The paramagnetic ferric iron at the active site of recombinant human PAH (hPAH) and its midpoint potential at pH 7.25 (E(m)(Fe(III)/Fe(II))) were studied by EPR spectroscopy. Similar EPR spectra were obtained for the tetrameric wild-type (wt-hPAH) and the dimeric truncated hPAH(Gly(103)-Gln(428)) corresponding to the "catalytic domain." A rhombic high spin Fe(III) signal with a g value of 4.3 dominates the EPR spectra at 3.6 K of both enzyme forms. An E(m) = +207 +/- 10 mV was measured for the iron in wt-hPAH, which seems to be adequate for a thermodynamically feasible electron transfer from BH(4) (E(m) (quinonoid-BH(2)/BH(4)) = +174 mV). The broad EPR features from g = 9.7-4.3 in the spectra of the ligand-free enzyme decreased in intensity upon the addition of L-Phe, whereas more axial type signals were observed upon binding of 7,8-dihydrobiopterin (BH(2)), the stable oxidized form of BH(4), and of dopamine. All three ligands induced a decrease in the E(m) value of the iron to +123 +/- 4 mV (L-Phe), +110 +/- 20 mV (BH(2)), and -8 +/- 9 mV (dopamine). On the basis of these data we have calculated that the binding affinities of L-Phe, BH(2), and dopamine decrease by 28-, 47-, and 5040-fold, respectively, for the reduced ferrous form of the enzyme, with respect to the ferric form. Interestingly, an E(m) value comparable with that of the ligand-free, resting form of wt-hPAH, i.e. +191 +/- 11 mV, was measured upon the simultaneous binding of both L-Phe and BH(2), representing an inactive model for the iron environment under turnover conditions. Our findings provide new information on the redox properties of the active site iron relevant for the understanding of the reductive activation of the enzyme and the catalytic mechanism.


Subject(s)
Biopterins/metabolism , Dopamine/metabolism , Iron/metabolism , Phenylalanine Hydroxylase/metabolism , Biopterins/analogs & derivatives , Catalysis , Electron Spin Resonance Spectroscopy , Humans , Ligands , Models, Molecular , Phenylalanine Hydroxylase/chemistry , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism , Substrate Specificity
7.
J Biol Chem ; 276(24): 21410-6, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11279171

ABSTRACT

The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor and a key regulator of lipid homeostasis. Numerous fatty acids and eicosanoids serve as ligands and activators for PPARalpha. Here we demonstrate that S-hexadecyl-CoA, a nonhydrolyzable palmitoyl-CoA analog, antagonizes the effects of agonists on PPARalpha conformation and function in vitro. In electrophoretic mobility shift assays, S-hexadecyl-CoA prevented agonist-induced binding of the PPARalpha-retinoid X receptor alpha heterodimer to the acyl-CoA oxidase peroxisome proliferator response element. PPARalpha bound specifically to immobilized palmitoyl-CoA and Wy14643, but not BRL49653, abolished binding. S-Hexadecyl-CoA increased in a dose-dependent and reversible manner the sensitivity of PPARalpha to chymotrypsin digestion, and the S-hexadecyl-CoA-induced sensitivity required a functional PPARalpha ligand-binding pocket. S-Hexadecyl-CoA prevented ligand-induced interaction between the co-activator SRC-1 and PPARalpha but increased recruitment of the nuclear receptor co-repressor NCoR. In cells, the concentration of free acyl-CoA esters is kept in the low nanomolar range due to the buffering effect of high affinity acyl-CoA-binding proteins, especially the acyl-CoA-binding protein. By using PPARalpha expressed in Sf21 cells for electrophoretic mobility shift assays, we demonstrate that S-hexadecyl-CoA was able to increase the mobility of the PPARalpha-containing heterodimer even in the presence of a molar excess of acyl-CoA-binding protein, mimicking the conditions found in vivo.


Subject(s)
Acyl Coenzyme A/pharmacology , Coenzyme A/pharmacology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Acyl-CoA Oxidase , Animals , Cell Line , Chromatography, Affinity , DNA-Binding Proteins/drug effects , Dimerization , Genes, Reporter , Glutathione Transferase/genetics , Histone Acetyltransferases , Ligands , Mice , Models, Molecular , Nuclear Receptor Coactivator 1 , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protein Biosynthesis , Protein Conformation , Rats , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Retinoic Acid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Retinoid X Receptors , Spodoptera , Trans-Activators/metabolism , Transcription Factors/drug effects , Transcription, Genetic , Transfection
8.
Eur J Biochem ; 268(4): 997-1005, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11179966

ABSTRACT

Recombinant human phenylalanine hydroxylase (hPAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is catalytically active both as a tetramer and a dimer [Knappskog, P.M., Flatmark, T., Aarden, J.M., Haavik, J. and Martínez, A. (1996) Eur. J. Biochem. 242, 813-821]. In the present study we have further characterized the differences in kinetic and regulatory properties of the two oligomeric forms when expressed in Escherichia coli. The positive cooperativity of L-Phe binding to the tetrameric form both in enzyme kinetic studies (h = 1.6) and intrinsic tryptophan fluorescence measurements (h = 2.3) was abolished in the dimer, which also revealed a catalytic efficiency (Vmax/[S]0.5) of only 35% of the tetramer. Whereas the catalytic activity of the tetramer was activated fivefold to sixfold by preincubation with L-Phe, the dimer revealed only a 1.6-fold activation. The crystal structure has identified a five-residue flexible hinge region (Asp425-Gln429) that links the beta-strand Tbeta2 (Ile421-Leu424) and the 24 residue amphipathic alpha-helix Talpha1 (Gln428-Lys452) at the C-terminus which forms an antiparallel coiled-coil structure in the center of the tetramer [Fusetti, F., Erlandsen, H., Flatmark, T. & Stevens, R.C. (1998) J. Biol. Chem. 273, 16962-16967]. The potential role of this flexible hinge in the tetramerization and the conformational transition of wt-hPAH on the cooperative binding of L-Phe was examined by site-specific mutagenesis. Substitution of Thr427 by a Pro (as in tyrosine hydroxylase) resulted in a mutant protein which was isolated mainly (about 95%) as a dimer. The isolated tetramer of T427P revealed no kinetic cooperativity of L-Phe binding, the catalytic efficiency (Vmax/[S]0.5) was decreased to about 39% of the wild-type tetramer and it was not activated by L-Phe preincubation. The dimeric forms of T427P and wt-hPAH revealed rather similar kinetic properties. The lack of kinetic cooperativity of the T427P tetramer was associated with a corresponding change in the binding isotherm for L-Phe as studied by intrinsic tryptophan fluorescence measurements. Protein stability was also reduced both for the E. coli expressed and the in vitro synthesized mutant enzyme. Collectively, these results indicate that the positive cooperativity of L-Phe binding to wt-hPAH requires a tetrameric enzyme with a C-terminal flexible hinge region (Asp425-Gln429) which has a structural role in the formation of the enzyme tetramer. Furthermore, this hinge region represents a motif in the PAH structure that is involved in the conformational change transmitted through the protein on the cooperative binding of L-Phe to tetrameric wt-hPAH. This conclusion is further supported by studies on two disease (phenylketonuria)-associated mutant forms.


Subject(s)
Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Phenylketonurias/genetics , Enzyme Stability , Escherichia coli/genetics , Humans , Kinetics , Mutagenesis, Site-Directed , Phenylalanine/metabolism , Phenylalanine Hydroxylase/genetics , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Transfection , Trypsin/chemistry , Tryptophan/chemistry
9.
Biochemistry ; 39(45): 13676-86, 2000 Nov 14.
Article in English | MEDLINE | ID: mdl-11076506

ABSTRACT

Tetrahydropterins are obligatory cofactors for tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. A series of synthetic analogues of 6(R)-L-erythro-5,6,7, 8-tetrahydrobiopterin (BH(4)) with different substituents in positions C2, N3, C4, N5, C6, C7, and N8 on the ring were used as active site probes for recombinant human TH. The enzyme tolerates rather bulky substituents at C6, as seen by the catalytic efficiency (V(max)/K(m)) and the coupling efficiency (mol of L-DOPA produced/mol of tetrahydropterin oxidized) of the cofactors. Substitutions at C2, C4, N5, and N8 abolish the cofactor activity of the pterin analogues. Molecular docking of BH(4) into the crystal structure of the catalytic domain of ligand-free rat TH results in complexes in which the pteridine ring pi-stacks with Phe300 and the N3 and the amino group at C2 hydrogen bonds with Glu332. The pteridine ring also establishes interactions with Leu294 and Gln310. The distance between C4a in the pteridines and the active site iron was 4.2 +/- 0.5 A for the ensemble of docked conformers. Docking of BH(4) analogues into TH also shows that the most bulky substituents at C6 can be well-accommodated within the large hydrophobic pocket surrounded by Ala297, Ser368, Tyr371, and Trp372, without altering the positioning of the ring. The pterin ring of 7-BH(4) shows proper stacking with Phe300, but the distance between the C4a and the active site iron is 0.6 A longer than for bound BH(4), a finding that may be related to the high degree of uncoupling observed for 7-BH(4).


Subject(s)
Pterins/chemistry , Tyrosine 3-Monooxygenase/chemistry , Animals , Binding Sites , Binding, Competitive , Catalysis , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Kinetics , Protein Conformation , Pterins/chemical synthesis , Pterins/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tyrosine 3-Monooxygenase/antagonists & inhibitors , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
10.
J Cell Sci ; 113 ( Pt 20): 3623-38, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11017878

ABSTRACT

We have studied the structural and functional properties of the pre-Golgi intermediate compartment (IC) in normal rat kidney cells using analytical cell fractionation with p58 as the principal marker. The sedimentation profile (sediterm) of p58, obtained by analytical differential centrifugation, revealed in steady-state cells the presence of two main populations of IC elements whose average sedimentation coefficients, s(H)=1150+/-58S ('heavy') and s(L)=158+/-8S ('light'), differed from the s-values obtained for elements of the rough and smooth endoplasmic reticulum. High resolution analysis of these subpopulations in equilibrium density gradients further revealed that the large difference in their s-values was mainly due to particle size. The 'light' particle population contained the bulk of COPI and COPII coats, and redistribution of p58 to these particles was observed in transport-arrested cells, showing that the two types of elements are also compositionally distinct and have functional counterparts in intact cells. Using a specific antibody against the 16 kDa proteolipid subunit of the vacuolar H(+)-ATPase, an enrichment of the V(o )domain of the ATPase was observed in the p58-positive IC elements. Interestingly, these elements could contain both COPI and COPII coats and their density distribution was markedly affected by GTP(&ggr;)S. Together with morphological observations, these results demonstrate that, in addition to clusters of small tubules and vesicles, the IC also consists of large-sized structures and corroborate the proposal that the IC elements contain an active vacuolar H(+)-ATPase.


Subject(s)
COP-Coated Vesicles/metabolism , Coat Protein Complex I/metabolism , Golgi Apparatus/metabolism , Mannose-Binding Lectins , Membrane Proteins/metabolism , Organelles/metabolism , Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases , Animals , Cell Fractionation , Cell Line , Centrifugation, Density Gradient , Coatomer Protein/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Organelles/drug effects , Organelles/ultrastructure , Protein Transport , Rats , Thapsigargin/pharmacology
11.
Eur J Biochem ; 267(20): 6302-10, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11012685

ABSTRACT

The microheterogeneity of recombinant human phenylalanine hydroxylase (hPAH) was investigated by isoelectric focusing and 2D electrophoresis. When expressed in Escherichia coli four main components (denoted hPAH I-IV) of approximately 50 kDa were observed on long-term induction at 28-37 degrees C with isopropyl thio-beta-D-galactoside (IPTG), differing in pI by about 0.1 pH unit. A similar type of microheterogeneity was observed when the enzyme was expressed (1 h at 37 degrees C) in an in vitro transcription-translation system, including both its nonphosphorylated and phosphorylated forms which were separated on the basis of a difference in mobility on SDS/PAGE. Experimental evidence is presented that the microheterogeneity is the result of nonenzymatic deamidations of labile amide containing amino acids. When expressed in E. coli at 28 degrees C, the percentage of the acidic forms of the enzyme subunit increased as a function of the induction time with IPTG, representing about 50% on 8 h induction. When the enzyme obtained after 2 h induction (containing mainly hPAH I) was incubated in vitro, its conversion to the acidic components (hPAH II-IV) revealed a pH and temperature dependence characteristic of a nonenzymatic deamidation of asparagine residues in proteins, with the release of ammonia. Comparing the microheterogeneity of the wild-type and a truncated form of the enzyme expressed in E. coli, it is concluded that the labile amide groups are located in the catalytic domain as defined by crystal structure analysis [Erlandsen, H., Fusetti, F., Martínez, A., Hough, E., Flatmark, T. & Stevens, R. C. (1997) Nat. Struct. Biol. 4, 995-1000]. It is further demonstrated that the progressive deamidations which occur in E. coli results in a threefold increase in the catalytic efficiency (Vmax/[S]0.5) of the enzyme and an increased susceptibility to limited tryptic proteolysis, characteristic of a partly activated enzyme. The results also suggest that deamidation may play a role in the long term regulation of the catalytic activity and the cellular turnover of this enzyme.


Subject(s)
Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Amides , Ammonia/analysis , Catalysis , Cloning, Molecular , Enzyme Stability , Escherichia coli , Humans , Isoelectric Focusing , Kinetics , Phenylalanine Hydroxylase/genetics , Phosphorylation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Trypsin
12.
Clin Exp Immunol ; 120(3): 420-3, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10844518

ABSTRACT

A full-length rat cDNA clone encoding aromatic L-amino acid decarboxylase (AADC) (E.C. 4.1.1.28) was used for in vitro transcription and translation. The enzyme had catalytic activity (0. 2 pmol serotonin/microl lysate per min), and was stimulated 2.5-fold by the addition of excess pyridoxal phosphate. On size exclusion chromatography, AADC eluted as a single activity peak with an apparent mol. wt of 93 kD. This activity peak was immunoprecipitated by sera from patients with autoimmune polyendocrine syndrome type I (APS I) containing autoantibodies against AADC. Serum and purified IgG from these patients inhibited the enzyme activity (non-competitively) by 10-80%, while sera from APS I patients without autoantibodies and controls did not. This finding confirms and extends previous observations that APS I patients have inhibitory antibodies against key enzymes involved in neurotransmitter biosynthesis.


Subject(s)
Aromatic Amino Acid Decarboxylase Inhibitors , Autoantibodies/metabolism , Polyendocrinopathies, Autoimmune/enzymology , Polyendocrinopathies, Autoimmune/immunology , Adolescent , Adult , Animals , Aromatic-L-Amino-Acid Decarboxylases/genetics , Catalysis , Chromatography, Gel , Female , Humans , Immune Sera , In Vitro Techniques , Male , Middle Aged , Protein Biosynthesis , Pyridoxal Phosphate/pharmacology , Rats , Transcription, Genetic
13.
Biochem Pharmacol ; 59(2): 123-9, 2000 Jan 15.
Article in English | MEDLINE | ID: mdl-10810446

ABSTRACT

The calcium antagonists verapamil, nitrendipine, mibefradil, and amlodipine accumulate in chromaffin granule ghosts with apparent equilibrium partition coefficients [(mol/mg membrane lipid)/(mol/mg solvent water)] of 246 +/- 105 (N = 8), 2700 +/- 600 (N = 4), 7400 +/- 2200 (N = 4), and 8100 +/- 1100 (N = 5), respectively. In the presence of 1.2 mM MgATP, the partition coefficients were 854 +/- 206 (N = 10), 2300 +/- 600 (N = 4), 32,700 +/- 8,900 (N = 7), and 20,300 +/- 5,000 (N = 11) for verapamil, nitrendipine, mibefradil, and amlodipine, respectively. Except for nitrendipine, the apparent partition coefficients in the presence of MgATP were significantly different from the control (P < 0.001). For amlodipine and verapamil, the vacuolar H(+)-ATPase inhibitors bafilomycin A1 (30 nM) and N-ethylmaleimide (2 mM) and the protonophore (uncoupler) carbonyl cyanide m-chlorophenylhydrazone (CCCP, 10 microM) completely blocked the increase in partition coefficients in response to MgATP. The extra amlodipine, mibefradil, and verapamil that accumulated in response to MgATP were released into the medium by CCCP (10 microM) by 18% (N = 5), 30% (N = 5), and 88% (N = 5) for amlodipine, mibefradil, and verapamil, respectively. Thus, amlodipine, mibefradil, and verapamil, but not nitrendipine, accumulate in catecholamine storage vesicles in response to delta mu H+ generated by the endogenous V-type H(+)-ATPase, and are partially released by de-energetisation. Hence, these calcium antagonists can reach unexpectedly high concentrations in certain target cells, and give pharmacodynamic properties not shared by nitrendipine.


Subject(s)
Calcium Channel Blockers/pharmacokinetics , Chromaffin Granules/metabolism , Vacuolar Proton-Translocating ATPases , Adenosine Triphosphate/pharmacology , Animals , Catecholamines/metabolism , Cattle , Chromaffin Granules/drug effects , Energy Metabolism , In Vitro Techniques , Nitrendipine/pharmacology , Proton-Translocating ATPases/metabolism
14.
J Lipid Res ; 41(4): 538-45, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10744774

ABSTRACT

A detailed analysis of the subcellular distribution of acyl-CoA esters in rat liver revealed that significant amounts of long-chain acyl-CoA esters are present in highly purified nuclei. No contamination of microsomal or mitochondrial marker enzymes was detectable in the nuclear fraction. C16:1 and C18:3-CoA esters were the most abundant species, and thus, the composition of acyl-CoA esters in the nuclear fraction deviates notably from the overall composition of acyl-CoA esters in the cell. After intravenous administration of the non-beta-oxidizable [(14)C]tetradecylthioacetic acid (TTA), the TTA-CoA ester could be recovered from the nuclear fraction. Acyl-CoA esters bind with high affinity to the ubiquitously expressed acyl-CoA binding protein (ACBP), and several lines of evidence suggest that ACBP functions as a pool former and transporter of acyl-CoA esters in the cytoplasm. By using immunohistochemistry, immunofluorescence microscopy, and immunoelectron microscopy we demonstrate that ACBP localizes to the nucleus as well as the cytoplasm of rat liver cell and rat hepatoma cells, suggesting that ACBP may also be involved in regulation of acyl-CoA-dependent processes in the nucleus.


Subject(s)
Acyl Coenzyme A/isolation & purification , Carrier Proteins/isolation & purification , Cell Nucleus/chemistry , Liver/chemistry , Animals , Antibody Specificity , COS Cells , Carrier Proteins/immunology , Cell Compartmentation , Cell Fractionation , Cell Nucleus/ultrastructure , Chromatography, High Pressure Liquid , Cytoplasm/chemistry , Diazepam Binding Inhibitor , Fatty Acids/isolation & purification , Fluorescent Antibody Technique , Liver/ultrastructure , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sulfides/metabolism , Tissue Distribution , Tumor Cells, Cultured
15.
Biochemistry ; 39(9): 2208-17, 2000 Mar 07.
Article in English | MEDLINE | ID: mdl-10694386

ABSTRACT

The crystal structure of the dimeric catalytic domain (residues 118-424) of human PheOH (hPheOH), cocrystallized with the oxidized form of the cofactor (7,8-dihydro-L-biopterin, BH(2)), has been determined at 2.0 A resolution. The pterin binds in the second coordination sphere of the catalytic iron (the C4a atom is 6.1 A away), and interacts through several hydrogen bonds to two water molecules coordinated to the iron, as well as to the main chain carbonyl oxygens of Ala322, Gly247, and Leu249 and the main chain amide of Leu249. Some important conformational changes are seen in the active site upon pterin binding. The loop between residues 245 and 250 moves in the direction of the iron, and thus allows for several important hydrogen bonds to the pterin ring to be formed. The pterin cofactor is in an ideal orientation for dioxygen to bind in a bridging position between the iron and the pterin. The pterin ring forms an aromatic pi-stacking interaction with Phe254, and Tyr325 contributes to the positioning of the pterin ring and its dihydroxypropyl side chain by hydrophobic interactions. Of particular interest in the hPheOH x BH(2) binary complex structure is the finding that Glu286 hydrogen bonds to one of the water molecules coordinated to the iron as well as to a water molecule which hydrogen bonds to N3 of the pterin ring. Site-specific mutations of Glu286 (E286A and E286Q), Phe254 (F254A and F254L), and Tyr325 (Y325F) have confirmed the important contribution of Glu286 and Phe254 to the normal positioning of the pterin cofactor and catalytic activity of hPheOH. Tyr325 also contributes to the correct positioning of the pterin, but has no direct function in the catalytic reaction, in agreement with the results obtained with rat TyrOH [Daubner, S. C., and Fitzpatrick, P. F. (1998) Biochemistry 37, 16440-16444]. Superposition of the binary hPheOH.BH(2) complex onto the crystal structure of the ligand-free rat PheOH (which contains the regulatory and catalytic domains) [Kobe, B., Jennings, I. G., House, C. M., Michell, B. J., Goodwill, K. E., Santarsiero, B. D., Stevens, R. C., Cotton, R. G. H., and Kemp, B. E. (1999) Nat. Struct. Biol. 6, 442-448] reveals that the C2'-hydroxyl group of BH(2) is sufficiently close to form hydrogen bonds to Ser23 in the regulatory domain. Similar interactions are seen with the hPheOH.adrenaline complex and Ser23. These interactions suggest a structural explanation for the specific regulatory properties of the dihydroxypropyl side chain of BH(4) (negative effector) in the full-length enzyme in terms of phosphorylation of Ser16 and activation by L-Phe.


Subject(s)
Mutagenesis, Site-Directed , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/genetics , Pterins/chemistry , Binding Sites/genetics , Biopterins/analogs & derivatives , Biopterins/chemistry , Biopterins/metabolism , Catalysis , Catecholamines/antagonists & inhibitors , Crystallography, X-Ray , Dimerization , Humans , Phenylalanine/metabolism , Phenylalanine Hydroxylase/metabolism , Pterins/metabolism
16.
Acta Physiol Scand ; 168(1): 1-17, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10691773

ABSTRACT

The catecholamines are widely distributed in mammals and their levels and physiological functions are regulated at many sites. These include their release from neuroendocrine cells, the type and sensitivity of the multiple receptors in target cells, the efficacy of the reuptake system in the secretory cells, and the rates of catecholamine biosynthesis and degradation. In the present review the main focus will be on the more recent studies on the biosynthesis in neuroendocrine cells which involves a specific set of enzymes, with special reference to physiologically important regulatory mechanisms. Eight enzymes of the biosynthetic pathway have now been identified, cloned, expressed as recombinant proteins, characterized with respect to catalytic and regulatory properties, and some of them also crystallized. The identification of the tyrosine hydroxylase catalysed reaction as the rate-limiting step in the normal catecholamine biosynthesis has attracted most attention, both in terms of transcriptional and post-translational regulation. In certain human genetic disorders of catecholamine biosynthesis other enzymes in the pathway may become rate-limiting, notably those involved in the biosynthesis/regeneration of the natural co-factor tetrahydrobiopterin in the tyrosine hydroxylase reaction. The enzymes involved seem to be regulated by a variety of physiological factors, both on a long-term scale and a short-term basis, and include the relative rates of synthesis, degradation and state of activation of the biosynthetic enzymes, notably of tyrosine hydroxylase. Multiple surface receptors and signalling pathways are activated in response to extracellular stimuli and play an essential role in the regulation of catecholamine biosynthesis.


Subject(s)
Catecholamines/metabolism , Neurosecretory Systems/metabolism , Animals , Catecholamines/biosynthesis , Catecholamines/physiology , Chemical Phenomena , Chemistry , Enzymes/genetics , Enzymes/metabolism , Humans , Metabolic Diseases/genetics , Mutation/genetics , Mutation/physiology , Neurosecretory Systems/cytology
18.
Neuropharmacology ; 38(6): 879-82, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10465691

ABSTRACT

Cinnarizine (1-diphenylmethyl-4-(3-phenyl-2-propenyl)piperazine) and its di-fluorinated derivative flunarizine inhibit the MgATP-dependent generation of a transmembrane proton electrochemical gradient in chromaffin granule ghosts. The concentrations giving 50% inhibition (IC50) of the MgATP-dependent generation of the pH-gradient were 5.9+/-0.6 microM (n = 6) and 3.0+/-0.3 microM (n = 5) for cinnarizine and flunarizine, respectively. The IC50 values for inhibiting the generation of the membrane potential were even lower, i.e. 0.19+/-0.06 microM (n = 6) and 0.15+/-0.01 microM (n = 4) for cinnarizine and flunarizine, respectively. Cinnarizine (10 microM) also inhibited the energy-dependent vesicular uptake of [14C]-dopamine (50 microM) by 76%, i.e. from 2.1+/-0.9 to 0.5+/-0.6 nmol/mg protein/min (n = 5, P < 0.002). Cinnarizine (10 microM) increased the MgATPase activity of the granule ghosts by 47+/-26% (n = 4) compatible with an uncoupling of the vacuolar H+-ATPase activity. The IC50-values observed for the two compounds are in the same range as their reported therapeutic plasma concentrations in vivo, suggesting that cinnarizine and flunarizine may well inhibit proton pumping and catecholamine uptake in storage vesicles also in vivo. This mechanism of action may contribute to the drug-induced parkinsonism seen as a side-effect of the two drugs.


Subject(s)
Cinnarizine/toxicity , Dopamine/metabolism , Flunarizine/toxicity , Parkinson Disease, Secondary/chemically induced , Proton-Translocating ATPases/metabolism , Uncoupling Agents/toxicity , Vacuoles/drug effects , Animals , Cattle , Chromaffin Cells/drug effects , Chromaffin Cells/metabolism , Energy Metabolism/drug effects , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Vacuoles/enzymology
19.
Eur J Biochem ; 262(3): 840-9, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10411647

ABSTRACT

Kinetic studies of tetrameric recombinant human tyrosine hydroxylase isoform 1 (hTH1) have revealed properties so far not reported for this enzyme. Firstly, with the natural cofactor (6R)-Lerythro-5,6,7, 8-tetrahydrobiopterin (H4biopterin) a time-dependent change (burst) in enzyme activity was observed, with a half-time of about 20 s for the kinetic transient. Secondly, nonhyperbolic saturation behaviour was found for H4biopterin with a pronounced negative cooperativity (0.39 < h < 0.58; [S]0.5 = 24 +/- 4 microM). On phosphorylation of Ser40 by protein kinase A, the affinity for H4biopterin increased ([S]0.5 = 11 +/- 2 microM) and the negative cooperativity was amplified (h = 0.27 +/- 0.03). The dimeric C-terminal deletion mutant (Delta473-528) of hTH1 also showed negative cooperativity of H4biopterin binding (h = 0.4). Cooperativity was not observed with the cofactor analogues 6-methyl-5,6,7,8-tetrahydropterin (h = 0.9 +/- 0.1; Km = 62.7 +/- 5.7 microM) and 3-methyl-5,6,7, 8-tetrahydropterin (H43-methyl-pterin)(h = 1.0 +/- 0.1; Km = 687 +/- 50 microM). In the presence of 1 mM H43-methyl-pterin, used as a competitive cofactor analogue to BH4, hyperbolic saturation curves were also found for H4biopterin (h = 1.0), thus confirming the genuine nature of the kinetic negative cooperativity. This cooperativity was confirmed by real-time biospecific interaction analysis by surface plasmon resonance detection. The equilibrium binding of H4biopterin to the immobilized iron-free apoenzyme results in a saturable positive resonance unit (DeltaRU) response with negative cooperativity (h = 0.52-0.56). Infrared spectroscopic studies revealed a reduced thermal stability both of the apo-and the holo-hTH1 on binding of H4biopterin and Lerythro-dihydrobiopterin (H2biopterin). Moreover, the ligand-bound forms of the enzyme also showed a decreased resistance to limited tryptic proteolysis. These findings indicate that the binding of H4biopterin at the active site induces a destabilizing conformational change in the enzyme which could be related to the observed negative cooperativity. Thus, our studies provide new insight into the regulation of TH by the concentration of H4biopterin which may have significant implications for the physiological regulation of catecholamine biosynthesis in neuroendocrine cells.


Subject(s)
Biopterins/analogs & derivatives , Surface Plasmon Resonance , Tyrosine 3-Monooxygenase/metabolism , Animals , Apoenzymes/metabolism , Biopterins/chemistry , Biopterins/metabolism , Cattle , Enzyme Stability , Humans , Kinetics , Ligands , Mice , Protein Binding , Protein Conformation , Pterins/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Temperature , Tyrosine 3-Monooxygenase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...