Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 30(31): 315802, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-29916815

ABSTRACT

We show that the application of a spin-polarized current to a double p domain wall system with a variable distance between the walls results in an interaction between the two domain walls. The transmission spectrum changes from that of a spin-dependent resonant double barrier to one like a [Formula: see text] wall. In addition, the spin torque on each individual wall creates coupled motion in the domain walls. The walls move independently with a fast speed at large separations, but slow considerably at small separations.

2.
Phys Rev Lett ; 118(8): 087601, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282167

ABSTRACT

The spatial resolution of imaging magnetometers has benefited from scanning probe techniques. The requirement that the sample perturbs the scanning probe through a magnetic field external to its volume limits magnetometry to samples with pre-existing magnetization. We propose a magnetometer in which the perturbation is reversed: the probe's magnetic field generates a response of the sample, which acts back on the probe and changes its energy. For an NV^{-} spin center in diamond this perturbation changes the fine-structure splitting of the spin ground state. Sensitive measurement techniques using coherent detection schemes then permit detection of the magnetic response of paramagnetic and diamagnetic materials. This technique can measure the thickness of magnetically dead layers with better than 0.1 Å accuracy.

3.
Phys Rev Lett ; 116(10): 107201, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015506

ABSTRACT

We demonstrate that electron spin relaxation in GaAs in the proximity of a Fe/MgO layer is dominated by interaction with an exchange-driven hyperfine field at temperatures below 60 K. Temperature-dependent spin-resolved optical pump-probe spectroscopy reveals a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. As the regime of large nuclear inhomogeneity is accessible in these heterostructures for magnetic fields <3 kG, inferences from this result resolve a long-standing and contentious dispute concerning the origin of spin relaxation in GaAs at low temperature when a magnetic field is present. Further, this improved fundamental understanding clarifies the importance of future experiments probing the time-dependent exchange interaction at a ferromagnet-semiconductor interface and its consequences for spin dissipation and transport during spin pumping.

4.
Phys Rev Lett ; 115(24): 246602, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26705647

ABSTRACT

We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage V_{s} that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of V_{s} between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field H_{app}^{z}. We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection.

5.
Philos Trans A Math Phys Eng Sci ; 373(2044)2015 Jun 28.
Article in English | MEDLINE | ID: mdl-25987575

ABSTRACT

Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence.

6.
Phys Rev Lett ; 112(18): 187201, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856716

ABSTRACT

Circulating orbital currents produced by the spin-orbit interaction for a single electron spin in a quantum dot are explicitly evaluated at zero magnetic field, along with their effect on the total magnetic moment (spin and orbital) of the electron spin. The currents are dominated by coherent superpositions of the conduction and valence envelope functions of the electronic state, are smoothly varying within the quantum dot, and are peaked roughly halfway between the dot center and edge. Thus the spatial structure of the spin contribution to the magnetic moment (which is peaked at the dot center) differs greatly from the spatial structure of the orbital contribution. Even when the spin and orbital magnetic moments cancel (for g=0) the spin can interact strongly with local magnetic fields, e.g., from other spins, which has implications for spin lifetimes and spin manipulation.

7.
Phys Rev Lett ; 110(17): 176602, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679752

ABSTRACT

A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism.

8.
Phys Rev Lett ; 108(18): 186602, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22681098

ABSTRACT

A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.

9.
Phys Rev Lett ; 104(7): 077202, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20366911

ABSTRACT

We analyze the interaction of a nanomagnet (ferromagnetic) with a single photonic mode of a cavity in a fully quantum-mechanical treatment and find that exceptionally large quantum-coherent magnet-photon coupling can be achieved. Coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of approximately 1 mm radius with a nanomagnet of approximately 100 nm radius and ferromagnetic resonance frequency of approximately 200 GHz. Eigenstates of the magnet-photon system correspond to entangled states of spin orientation and photon number, in which over 10{5} values of each quantum number are represented; conversely, initial (coherent) states of definite spin and photon number evolve dynamically to produce large oscillations in the microwave power (and nanomagnet spin orientation), and are characterized by exceptionally long dephasing times.

10.
Phys Rev Lett ; 104(8): 086404, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20366956

ABSTRACT

Measurements of the local density of states of individual acceptors in III-V semiconductors show that the symmetry of the acceptor states strongly depends on the depth of the atom below a (110) surface. Tight-binding calculations performed for a uniformly strained bulk material demonstrate that strain induced by the surface relaxation is responsible for the observed depth-dependent symmetry breaking of acceptor wave functions. As this effect is strongest for weakly bound acceptors, it explains within a unified approach the commonly observed triangular shapes of shallow acceptors and the crosslike shapes of deeply bound acceptor states in III-V materials.

11.
Faraday Discuss ; 143: 109-15; discussion 169-86, 2009.
Article in English | MEDLINE | ID: mdl-20334097

ABSTRACT

We describe the results of a theoretical analysis of the localization of functionalized metal or semiconductor nanoparticles at the interface of two immiscible electrolytic solutions and discuss various options that this interface may offer for a new kind of self-assembled, electro-optic devices.

12.
Proc Natl Acad Sci U S A ; 105(47): 18212-4, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-19017787

ABSTRACT

Control of the fundamental absorption edge of a quantum dot with an applied electric field has been limited by the breakdown fields of the solid-state material surrounding the dot. However, much larger fields can be applied at the interface of two immiscible electrolytic solutions (ITIES) in an electrochemical cell. These electric fields also localize the quantum dots at the ITIES. Our analysis shows that semiconductor nanocrystals localized at the ITIES should have electric-field-tunable optical properties across much of the visible spectrum. The transparency of the liquids in such cells indicates that this configuration would be well suited for electrically tunable optical filters with wide-angle acceptance.

13.
Nat Mater ; 7(3): 203-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18278049

ABSTRACT

Controlling and monitoring individual spins is desirable for building spin-based devices, as well as implementing quantum information processing schemes. As with trapped ions in cold gases, magnetic ions trapped on a semiconductor lattice have uniform properties and relatively long spin lifetimes. Furthermore, diluted magnetic moments in semiconductors can be strongly coupled to the surrounding host, permitting optical or electrical spin manipulation. Here we describe the zero-field optical manipulation of a few hundred manganese ions in a single gallium arsenide quantum well. Optically created mobile electron spins dynamically generate an energy splitting of the ion spins and enable magnetic moment orientation solely by changing either photon helicity or energy. These polarized manganese spins precess in a transverse field, enabling measurements of the spin lifetimes. As the magnetic ion concentration is reduced and the manganese spin lifetime increases, coherent optical control and readout of single manganese spins in gallium arsenide should be possible.

14.
Phys Rev Lett ; 99(15): 157202, 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-17995207

ABSTRACT

We present low-temperature scanning tunneling spectroscopy measurements on Mn acceptors in InAs in comparison with tight-binding calculations. We find a strong (001)-mirror asymmetry of the bound hole wave function close to the (110) surface. In addition, multiple acceptor-related peaks are observed and are attributed to a spin-orbit splitting of the acceptor level. Because of the p-d exchange interaction the local density of states near the acceptors is enhanced in the valence band and suppressed in the conduction band. We also observe signs of anisotropic scattering of the conduction band states by neutral acceptors.

15.
Nat Mater ; 6(7): 512-5, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17558428

ABSTRACT

Transition-metal dopants such as Mn determine the ferromagnetism in dilute magnetic semiconductors such as Ga(1-x)Mn(x)As. Recently, the acceptor states of Mn dopants in GaAs were found to be highly anisotropic owing to the symmetry of the host crystal. Here, we show how the shape of such a state can be modified by local strain. The Mn acceptors near InAs quantum dots are mapped at room temperature by scanning tunnelling microscopy. Dramatic distortions and a reduction in the symmetry of the wavefunction of the hole bound to the Mn acceptor are observed originating from strain induced by quantum dots. Calculations of the acceptor-state wavefunction in the presence of strain, within a tight-binding model and within an effective-mass model, agree with the experimentally observed shape. The magnetic easy axes of strained lightly doped Ga(1-x)Mn(x)As can be explained on the basis of the observed local density of states for the single Mn spin.

16.
Phys Rev Lett ; 99(22): 227205, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-18233322

ABSTRACT

We develop a quantitatively predictive theory for impurity-band ferromagnetism in the low-doping regime of Ga1-xMnxAs. We compare it with measurements of a series of samples whose compositions span the transition from paramagnetic insulating to ferromagnetic conducting behavior. The theoretical Curie temperatures depend sensitively on the local fluctuations in the Mn-hole binding energy, which originate from Mn disorder and As antisite defects. The experimentally determined hopping energy is an excellent predictor of the Curie temperature, in agreement with the theory.

17.
Phys Rev Lett ; 97(26): 266601, 2006 Dec 31.
Article in English | MEDLINE | ID: mdl-17280444

ABSTRACT

A self-consistent treatment of the spin-Hall effect requires consideration of the spin-orbit coupling and electron-impurity scattering on equal footing. This is done here for the experimentally relevant case of a [110] GaAs quantum well [Sih, Nature Phys. 1, 31 (2005)]. Working within the framework of the exact linear response formalism we calculate the spin-Hall conductivity including the Dresselhaus linear and cubic terms in the band structure, as well as the electron-impurity scattering and electron-electron interaction to all orders. We show that the spin-Hall conductivity naturally separates into two contributions, skew-scattering and side-jump, and we propose an experiment to distinguish between them.

18.
Phys Rev Lett ; 95(25): 256402, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16384482

ABSTRACT

The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show that the crosslike shape of the Mn-acceptor wave function in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn delta-doped layers grown on differently oriented substrates.

19.
Phys Rev Lett ; 92(21): 216806, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15245308

ABSTRACT

The wave function of a hole bound to an individual Mn acceptor in GaAs is spatially mapped by scanning tunneling microscopy at room temperature and an anisotropic, crosslike shape is observed. The spatial structure is compared with that from an envelope-function, effective mass model and from a tight-binding model. This demonstrates that anisotropy arising from the cubic symmetry of the GaAs crystal produces the crosslike shape for the hole wave function. Thus the coupling between Mn dopants in GaMnAs mediated by such holes will be highly anisotropic.

20.
Phys Rev Lett ; 91(24): 246601, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14683140

ABSTRACT

Time-resolved optical measurements in (110)-oriented GaAs/AlGaAs quantum wells show a tenfold increase of the spin-relaxation rate as a function of applied electric field from 20 to 80 kV cm(-1) at 170 K and indicate a similar variation at 300 K, in agreement with calculations based on the Rashba effect. Spin relaxation is almost field independent below 20 kV cm(-1) reflecting quantum well interface asymmetry. The results indicate the achievability of a voltage-gateable spin-memory time longer than 3 ns simultaneously with a high electron mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...