Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Nano ; 15(10): 16501-16514, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34585583

ABSTRACT

Recently, there has been significant interest in using dielectric nanocavities for the controlled scattering of light, owing to the diverse electromagnetic modes that they support. For plasmonic systems, electron energy-loss spectroscopy (EELS) is now an established method enabling structure-optical property analysis at the scale of the nanostructure. Here, we instead test its potential for the near-field mapping of photonic eigenmodes supported in planar dielectric nanocavities, which are lithographically patterned from amorphous silicon according to standard photonic principles. By correlating results with finite element simulations, we demonstrate how many of the EELS excitations can be directly corresponded to various optical eigenmodes of interest for photonic engineering. The EELS maps present a high spatial definition, displaying intensity features that correlate precisely to the impact parameters giving the highest probability of modal excitation. Further, eigenmode characteristics translate into their EELS signatures, such as the spatially and energetically extended signal of the low Q-factor electric dipole and nodal intensity patterns emerging from excitation of toroidal and second-order magnetic modes within the nanocavity volumes. Overall, the spatial-spectral nature of the data, combined with our experimental-simulation toolbox, enables interpretation of subtle changes in the EELS response across a range of nanocavity dimensions and forms, with certain simulated resonances matching the excitation energies within ±0.01 eV. By connecting results to far-field simulations, perspectives are offered for tailoring the nanophotonic resonances via manipulating nanocavity size and shape.

2.
J Opt Soc Am A Opt Image Sci Vis ; 37(2): 209-218, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32118900

ABSTRACT

Two superposed layers of transparent cylindrical lenslet gratings create classical moiré fringes when illuminated from behind. We rely on this observation to conceive special devices made of superposed lenslet gratings that produce compelling beating shapes when tilted against the light. Level-line moirés are created by superposing gratings of cylindrical lenslets of the same period on both sides of a substrate and by locally shifting some of the cylindrical lenses according to the moiré theory. Depending on the illumination and the viewing conditions, constant light intensities or colors move across graphical elements or faces. Such level-line moiré samples have been fabricated and characterized to determine the optimal fabrication parameters. Thanks to their striking visual appeal and their relatively challenging fabrication, moirés created by superposition of lenslets have a high potential for document security, art, and decoration.

3.
Opt Express ; 27(26): 37419-37434, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878522

ABSTRACT

Two superposed layers of transparent cylindrical lenslet gratings create classical moiré fringes, when illuminated from behind. We rely on this observation to conceive special devices made of superposed lenslet gratings that produce animated moirés when they are tilted against the light. One-dimensional moirés can show a message moving back and forth along a given direction or radially expanding towards the exterior of a disk. These 1D moirés are conceived by fabricating two layers of micro-lenses on both sides of a transparent substrate. The top layer is a rectilinear grating of cylindrical lenslets and the bottom layer is an arrangement of smaller lenslets of different sizes and orientations that create a high contrast. Moirés created by superpositions of lenslets are visually striking and can be challenging to fabricate. Therefore they have a high potential for art, decoration, and document security.

4.
ACS Nano ; 12(9): 9116-9125, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30138559

ABSTRACT

Photocharge generation and formation of long-lived charge carriers are relevant in photosynthesis, photocatalysis, photovoltaics, and organic electronics. A better understanding of the factors that determine these processes in synthetic polymer semiconductors is crucial, but difficult due to their morphological inhomogeneity. Here, we report the formation of exceptionally long-lived photocharges in one-dimensional organic semiconductor nanostructures. These nanostructures consist of chiral oligopeptide-substituted thienothiophene-based chromophores and exhibit a well-defined helical arrangement of these chromophores at their core. The chromophores give rise to spectroscopic H-aggregates and show strong intermolecular excitonic coupling. We demonstrate that all of these parameters are the prerequisites required for the nanostructures to show the efficient formation of polaron-like photocharges upon irradiation with a low-power white light source. The observed charge carriers in the helical nanowires show an unusually long lifetime on the order of several hours and are formed at high concentrations of up to 3 mol % in the absence of any dedicated electron acceptor. They are observed in solution as well as in film and furthermore give rise to a light-induced increase of the macroscopic charge transport. By contrast, no such photocharge generation is observed either in non-aggregating reference systems of the same chromophores or in aggregated but non-helical systems that do not form one-dimensional nanostructures. Our results thus demonstrate a clear correlation between nanoscopic confinement and the generation of long-lived photocharges.

5.
J Phys Chem Lett ; 9(1): 110-119, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29240442

ABSTRACT

The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.


Subject(s)
Cell Membrane/chemistry , Membrane Microdomains/chemistry , Cell Membrane/physiology , Diffusion , Lipids/chemistry , Membrane Microdomains/physiology , Nanostructures , Spectrometry, Fluorescence
6.
Nano Lett ; 17(10): 6295-6302, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28926278

ABSTRACT

Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 µs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.


Subject(s)
Cell Membrane/chemistry , Cholesterol/analysis , Ethanolamines/analysis , Membrane Microdomains/chemistry , Spectrometry, Fluorescence/methods , Sphingomyelins/analysis , Animals , CHO Cells , Cricetulus , Diffusion
7.
ACS Nano ; 11(7): 7241-7250, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696660

ABSTRACT

Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilayers has been questioned. Here, we perform fluorescence correlation spectroscopy on planar plasmonic antenna arrays with different nanogap sizes to assess the dynamic nanoscale organization of mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the nanoantennas together with their outstanding planarity to investigate membrane regions as small as 10 nm in size with microsecond time resolution. Our diffusion data are consistent with the coexistence of transient nanoscopic domains in both the liquid-ordered and the liquid-disordered microscopic phases of multicomponent lipid bilayers. These nanodomains have characteristic residence times between 30 and 150 µs and sizes around 10 nm, as inferred from the diffusion data. Thus, although microscale phase separation occurs on mimetic membranes, nanoscopic domains also coexist, suggesting that these transient assemblies might be similar to those occurring in living cells, which in the absence of raft-stabilizing proteins are poised to be short-lived. Importantly, our work underscores the high potential of photonic nanoantennas to interrogate the nanoscale heterogeneity of native biological membranes with ultrahigh spatiotemporal resolution.


Subject(s)
Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Phase Transition , Cholesterol/chemistry , Diffusion , Models, Molecular , Phosphatidylcholines/chemistry , Spectrometry, Fluorescence/methods
8.
ACS Appl Mater Interfaces ; 9(28): 23314-23318, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28678470

ABSTRACT

To grow small molecule semiconductor thin films with domain size larger than modern-day device sizes, we evaporate the material through a dense array of small apertures, called a stencil nanosieve. The aperture size of 0.5 µm results in low nucleation density, whereas the aperture-to-aperture distance of 0.5 µm provides sufficient crosstalk between neighboring apertures through the diffusion of adsorbed molecules. By integrating the nanosieve in the channel area of a thin-film transistor mask, we show a route for patterning both the organic semiconductor and the metal contacts of thin-film transistors using one mask only and without mask realignment.

9.
ACS Nano ; 11(4): 3485-3495, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28290663

ABSTRACT

While plasmonic antennas composed of building blocks made of the same material have been thoroughly studied, recent investigations have highlighted the unique opportunities enabled by making compositionally asymmetric plasmonic systems. So far, mainly heterostructures composed of nanospheres and nanodiscs have been investigated, revealing opportunities for the design of Fano resonant nanostructures, directional scattering, sensing and catalytic applications. In this article, an improved fabrication method is reported that enables precise tuning of the heterodimer geometry, with interparticle distances made down to a few nanometers between Au-Ag and Au-Al nanoparticles. A wide range of mode energy detuning and coupling conditions are observed by near field hyperspectral imaging performed with electron energy loss spectroscopy, supported by full wave analysis numerical simulations. These results provide direct insights into the mode hybridization of plasmonic heterodimers, pointing out the influence of each dimer constituent in the overall electromagnetic response. By relating the coupling of nondipolar modes and plasmon-interband interaction with the dimer geometry, this work facilitates the development of plasmonic heterostructures with tailored responses, beyond the possibilities offered by homodimers.

10.
Nano Lett ; 17(3): 1703-1710, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28182429

ABSTRACT

Optical nanoantennas have a great potential for enhancing light-matter interactions at the nanometer scale, yet fabrication accuracy and lack of scalability currently limit ultimate antenna performance and applications. In most designs, the region of maximum field localization and enhancement (i.e., hotspot) is not readily accessible to the sample because it is buried into the nanostructure. Moreover, current large-scale fabrication techniques lack reproducible geometrical control below 20 nm. Here, we describe a new nanofabrication technique that applies planarization, etch back, and template stripping to expose the excitation hotspot at the surface, providing a major improvement over conventional electron beam lithography methods. We present large flat surface arrays of in-plane nanoantennas, featuring gaps as small as 10 nm with sharp edges, excellent reproducibility and full surface accessibility of the hotspot confined region. The novel fabrication approach drastically improves the optical performance of plasmonic nanoantennas to yield giant fluorescence enhancement factors up to 104-105 times, together with nanoscale detection volumes in the 20 zL range. The method is fully scalable and adaptable to a wide range of antenna designs. We foresee broad applications by the use of these in-plane antenna geometries ranging from large-scale ultrasensitive sensor chips to microfluidics and live cell membrane investigations.

11.
Nat Nanotechnol ; 12(1): 73-80, 2017 01.
Article in English | MEDLINE | ID: mdl-27694849

ABSTRACT

Predetermined and selective placement of nanoparticles onto large-area substrates with nanometre-scale precision is essential to harness the unique properties of nanoparticle assemblies, in particular for functional optical and electro-optical nanodevices. Unfortunately, such high spatial organization is currently beyond the reach of top-down nanofabrication techniques alone. Here, we demonstrate that topographic features comprising lithographed funnelled traps and auxiliary sidewalls on a solid substrate can deterministically direct the capillary assembly of Au nanorods to attain simultaneous control of position, orientation and interparticle distance at the nanometre level. We report up to 100% assembly yield over centimetre-scale substrates. We achieve this by optimizing the three sequential stages of capillary nanoparticle assembly: insertion of nanorods into the traps, resilience against the receding suspension front and drying of the residual solvent. Finally, using electron energy-loss spectroscopy we characterize the spectral response and near-field properties of spatially programmable Au nanorod dimers, highlighting the opportunities for precise tunability of the plasmonic modes in larger assemblies.

12.
Nano Lett ; 15(6): 4176-82, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25926327

ABSTRACT

We present a novel blurring-free stencil lithography patterning technique for high-throughput fabrication of large-scale arrays of nanoaperture optical antennas. The approach relies on dry etching through nanostencils to achieve reproducible and uniform control of nanoantenna geometries at the nanoscale, over millimeter-sizes in a thin aluminum film. We demonstrate the fabrication of over 400 000 bowtie nanoaperture (BNA) antennas on biocompatible substrates, having gap sizes ranging from (80 ± 5) nm down to (20 ± 10) nm. To validate their applicability on live cell research, we used the antenna substrates as hotspots of localized illumination to excite fluorescently labeled lipids on living cell membranes. The high signal-to-background afforded by the BNA arrays allowed the recording of single fluorescent bursts corresponding to the passage of freely diffusing individual lipids through hotspot excitation regions as small as 20 nm. Statistical analysis of burst length and intensity together with simulations demonstrate that the measured signals arise from the ultraconfined excitation region of the antennas. Because these inexpensive antenna arrays are fully biocompatible and amenable to their integration in most fluorescence microscopes, we foresee a large number of applications including the investigation of the plasma membrane of living cells with nanoscale resolution at endogenous expression levels.


Subject(s)
Aluminum/chemistry , Cell Membrane/chemistry , Membrane Lipids/chemistry , Nanopores , Animals , CHO Cells , Cricetinae , Cricetulus
SELECTION OF CITATIONS
SEARCH DETAIL
...