Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2217828120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36716364

ABSTRACT

Thermal sensations contribute to our ability to perceive and explore the physical world. Reproducing these sensations in a spatiotemporally programmable manner through wireless computer control could enhance virtual experiences beyond those supported by video, audio and, increasingly, haptic inputs. Flexible, lightweight and thin devices that deliver patterns of thermal stimulation across large areas of the skin at any location of the body are of great interest in this context. Applications range from those in gaming and remote socioemotional communications, to medical therapies and physical rehabilitation. Here, we present a set of ideas that form the foundations of a skin-integrated technology for power-efficient generation of thermal sensations across the skin, with real-time, closed-loop control. The systems exploit passive cooling mechanisms, actively switchable thermal barrier interfaces, thin resistive heaters and flexible electronics configured in a pixelated layout with wireless interfaces to portable devices, the internet and cloud data infrastructure. Systematic experimental studies and simulation results explore the essential mechanisms and guide the selection of optimized choices in design. Demonstration examples with human subjects feature active thermoregulation, virtual social interactions, and sensory expansion.


Subject(s)
Skin , Virtual Reality , Humans , Electronics , Thermosensing , Communication
2.
Proc Natl Acad Sci U S A ; 119(23): e2117764119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35653567

ABSTRACT

Electrical nerve stimulation serves an expanding list of clinical applications, but it faces persistent challenges in selectively activating bundled nerve fibers. In this study, we investigated electrochemical modulation with an ion-selective membrane (ISM) and whether it, used together with electrical stimulation, may provide an approach for selective control of peripheral nerves. Guided by theoretical transport modeling and direct concentration measurements, we developed an implantable, multimodal ISM cuff capable of simultaneous electrical stimulation and focused Ca2+ depletion. Acutely implanting it on the sciatic nerve of a rat in vivo, we demonstrated that Ca2+ depletion could increase the sensitivity of the nerve to electrical stimulation. Furthermore, we found evidence that the effect of ion modulation would selectively influence functional components of the nerve, allowing selective activation by electrical current. Our results raise possibilities for improving functional selectivity of new and existing bioelectronic therapies, such as vagus nerve stimulation.


Subject(s)
Electric Stimulation Therapy , Nerve Tissue , Sciatic Nerve , Animals , Electric Stimulation , Nerve Fibers , Rats , Sciatic Nerve/physiology
3.
Water Res ; 201: 117351, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34161873

ABSTRACT

In electromembrane processes such as electrodialysis (ED) and ion concentration polarization (ICP), the diffusion layers on both diluate and concentrate sides influence permselectivity of the ion-exchange membrane and current utilization. The diffusion layer in the diluate stream, due to lower salinity and higher resistivity, has been regarded as the primary source of energy loss. In contrast, very few studies have focused on the diffusion layer in the concentrate stream. In this paper, we evaluate the influence of hydrodynamic convective flow on the development of diffusion layers on both concentrate and diluate sides, specifically in the ICP desalination process. Interestingly, the higher convective flow in the concentrate side was shown to drastically improve the current utilization drop in high operating current, which has been a recurring challenge in electromembrane processes. We attribute this to the prevention of co-ion leakage into the membrane, confirmed by both experimentation and numerical modeling. This new insight has a clear design implication for optimizing electromembrane processes for higher energy efficiency.


Subject(s)
Salinity , Ion Exchange
4.
Front Neurosci ; 15: 628778, 2021.
Article in English | MEDLINE | ID: mdl-33664647

ABSTRACT

For many peripheral neuro-modulation applications, the cuff electrode has become a preferred technology for delivering electrical current into targeted volumes of tissue. While basic cuffs with low spatial selectivity, having longitudinally arranged contacts, can be produced from relatively straightforward processes, the fabrication of more complex electrode configurations typically requires iterative design and clean-room fabrication with skilled technicians. Although facile methods for fabricating cuff electrodes exist, their inconsistent products have limited their adoption for rapid manufacturing. In this article, we report a fast, low-cost fabrication process for patterning of electrode contacts in an implantable peripheral nerve cuff. Using a laser cutter as we have prescribed, the designer can render precise contact geometries that are consistent between batches. This method is enabled by the use of silicone/carbon black (CB) composite electrodes, which integrate with the patterned surface of its substrate-tubular silicone insulation. The size and features of its products can be adapted to fit a wide range of nerve diameters and applications. In this study, we specifically documented the manufacturing and evaluation of circumpolar cuffs with radial arrays of three contacts for acute implantation on the rat sciatic nerve. As part of this method, we also detail protocols for verification-electrochemical characterization-and validation-electrophysiological evaluation-of implantable cuff electrodes. Applied to our circumpolar cuff electrode, we report favorable electrical characteristics. In addition, we report that it reproduces expected electrophysiological behaviors described in prior literature. No specialized equipment or fabrication experience was required in our production, and we encountered negligible costs relative to commercially available solutions. Since, as we demonstrate, this process generates consistent and precise electrode geometries, we propose that it has strong merits for use in rapid manufacturing.

5.
Nat Commun ; 6: 6566, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25782446

ABSTRACT

Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.


Subject(s)
Biomimetic Materials , Materials Testing , Biocompatible Materials/chemistry , Biomimetics , Drug Delivery Systems , Elastic Modulus , Electronics , Electrophysiology , Epidermis/metabolism , Finite Element Analysis , Hardness , Humans , Hydrogels/chemistry , Imides/chemistry , Skin , Stress, Mechanical , Tensile Strength , Tissue Engineering/methods
6.
Science ; 347(6218): 154-9, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25574018

ABSTRACT

Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.

7.
Science ; 344(6179): 70-4, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24700852

ABSTRACT

When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.


Subject(s)
Microfluidics/instrumentation , Monitoring, Ambulatory/instrumentation , Monitoring, Physiologic/instrumentation , Skin , Adult , Elasticity , Electrocardiography/instrumentation , Electrocardiography/methods , Electrocardiography, Ambulatory/instrumentation , Electrocardiography, Ambulatory/methods , Electroencephalography/instrumentation , Electroencephalography/methods , Electromyography/instrumentation , Electromyography/methods , Electrooculography , Equipment Design , Humans , Male , Monitoring, Ambulatory/methods , Monitoring, Physiologic/methods , Remote Sensing Technology , Silicone Elastomers , Wireless Technology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...