Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
SLAS Discov ; 26(9): 1079-1090, 2021 10.
Article in English | MEDLINE | ID: mdl-34269109

ABSTRACT

The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.


Subject(s)
COVID-19/diagnostic imaging , High-Throughput Screening Assays/methods , Image Cytometry/methods , Respiratory Distress Syndrome/diagnostic imaging , COVID-19/diagnosis , COVID-19/virology , Cell Membrane Permeability/genetics , Drug Discovery , Endothelial Cells/ultrastructure , Endothelial Cells/virology , Humans , Image Processing, Computer-Assisted , Pandemics/prevention & control , Phenotype , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/pathology , Pulmonary Artery/virology , Pulmonary Edema/diagnosis , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/virology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/virology , SARS-CoV-2/pathogenicity , Thrombin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
2.
Blood Adv ; 2(5): 549-558, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29519898

ABSTRACT

Activated factor XIIa (FXIIa) is a serine protease that has received a great deal of interest in recent years as a potential target for the development of new antithrombotics. Despite the strong interest in obtaining structural information, only the structure of the FXIIa catalytic domain in its zymogen conformation is available. In this work, reproducible experimental conditions found for the crystallization of human plasma ß-FXIIa and crystal growth optimization have led to determination of the first structure of the active form of the enzyme. Two crystal structures of human plasma ß-FXIIa complexed with small molecule inhibitors are presented herein. The first is the noncovalent inhibitor benzamidine. The second is an aminoisoquinoline containing a boronic acid-reactive group that targets the catalytic serine. Both benzamidine and the aminoisoquinoline bind in a canonical fashion typical of synthetic serine protease inhibitors, and the protease domain adopts a typical chymotrypsin-like serine protease active conformation. This novel structural data explains the basis of the FXII activation, provides insights into the enzymatic properties of ß-FXIIa, and is a great aid toward the further design of protease inhibitors for human FXIIa.


Subject(s)
Factor XII/chemistry , Benzamidines/chemistry , Boronic Acids/chemistry , Crystallization/methods , Crystallography, X-Ray , Databases, Protein , Factor XII/antagonists & inhibitors , Humans , Molecular Structure , Protein Binding , Software
3.
Expert Opin Investig Drugs ; 23(2): 163-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24215473

ABSTRACT

INTRODUCTION: Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. AREAS COVERED: This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as ß-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. EXPERT OPINION: The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacterial Infections/drug therapy , Animals , Drug Resistance, Multiple, Bacterial , Humans
4.
Sci Rep ; 3: 1146, 2013.
Article in English | MEDLINE | ID: mdl-23359492

ABSTRACT

Burkholderia pseudomallei is the causative agent of melioidosis. Treatment of melioidosis is suboptimal and developing improved melioidosis therapies requires animal models. In this report, we exposed male BALB/c mice to various amounts of aerosolized B. pseudomallei 1026b to determine lethality. After establishing a median lethal dose (LD(50)) of 2,772 colony forming units (cfu)/animal, we tested the ability of doxycycline administered 6 hours after exposure to a uniformly lethal dose of ~20 LD(50) to prevent death and eliminate bacteria from the lung and spleens. Tissue bacterial burdens were examined by PCR analysis. We found that 100% of mice treated with doxycycline survived and B. pseudomallei DNA was not amplified from the lungs or spleens of most surviving mice. We conclude the BALB/c mouse is a useful model of melioidosis. Furthermore, the data generated in this mouse model indicate that doxycycline is likely to be effective in post-exposure prophylaxis of melioidosis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Burkholderia pseudomallei/pathogenicity , Doxycycline/administration & dosage , Melioidosis/drug therapy , Melioidosis/microbiology , Aerosols , Animals , Bacterial Load , Disease Models, Animal , Lethal Dose 50 , Male , Melioidosis/mortality , Mice
5.
Antimicrob Agents Chemother ; 56(4): 2037-47, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22290969

ABSTRACT

Community-acquired pneumonia (CAP) continues to be a major health challenge in the United States and globally. Factors such as overprescribing of antibiotics and noncompliance with dosing regimens have added to the growing antibacterial resistance problem. In addition, several agents available for the treatment of CAP have been associated with serious side effects. Cethromycin is a new ketolide antibiotic that may provide prescribing physicians with an additional agent to supplement a continually limited armamentarium. Two global phase III noninferiority studies (CL05-001 and CL06-001) to evaluate cethromycin safety and efficacy were designed and conducted in patients with mild to moderate CAP. Study CL05-001 demonstrated an 83.1% clinical cure rate in the cethromycin group compared with 81.1% in the clarithromycin group (95% confidence interval [CI], -4.8%, +8.9%) in the intent to treat (ITT) population and a 94.0% cethromycin clinical cure rate compared with a 93.8% clarithromycin cure rate (95% CI, -4.5%, +5.1%) in the per protocol clinical (PPc) population. Study CL06-001 achieved an 82.9% cethromycin clinical cure rate in the ITT population compared with an 88.5% clarithromycin cure rate (95% CI, -11.9%, +0.6%), whereas the clinical cure rate in the PPc population was 91.5% in cethromycin group compared with 95.9% in clarithromycin group (95% CI, -9.1%, +0.3%). Both studies met the primary endpoints for clinical cure rate based on predefined, sliding-scale noninferiority design. Therefore, in comparison with clarithromycin, these two noninferiority studies demonstrated the efficacy and safety of cethromycin, with encouraging findings of efficacy in subjects with Streptococcus pneumoniae bacteremia. No clinically significant adverse events were observed during the studies. Cethromycin may be a potential oral therapy for the outpatient treatment of CAP.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Clarithromycin/therapeutic use , Community-Acquired Infections/drug therapy , Ketolides/therapeutic use , Pneumonia/drug therapy , Adolescent , Adult , Aged , Anti-Bacterial Agents/adverse effects , Clarithromycin/adverse effects , Community-Acquired Infections/epidemiology , Community-Acquired Infections/microbiology , Double-Blind Method , Endpoint Determination , Ethnicity , Female , Humans , Ketolides/adverse effects , Male , Middle Aged , Pneumonia/epidemiology , Pneumonia/microbiology , Sex Factors , Treatment Outcome , Young Adult
6.
Anticancer Agents Med Chem ; 12(9): 1117-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22339065

ABSTRACT

The indolo[2,3-a]carbazole alkaloids constitute an important class of natural products with interesting and diverse biological activities. A series of novel ring-fused indolocarbazoles were synthesized and evaluated for inhibition of topoisomerase I-mediated relaxation of supercoiled DNA and in vitro antitumor activity. The derivatives bearing a methylenedioxy or an ethylenedioxy ring fused onto the nonglycosylated indole (1a, 1b) demonstrated more potent anti-topoisomerase I activity. The isopropylenedioxy analogue 1c was approximately half as active as 1a, while the O-dimethoxy analogue 1d and the regioisomers 2a and 2b were essentially devoid of measurable activity, implying that the stacking with the intact DNA strand has been impeded by these compounds due to steric hindrance. The newly synthesized indolocarbazoles were screened against the NCI's 60 tumor cell lines. The order of activity, based on the mean GI50 values, is as follows: 1a > 2a ~ 1d > 1b > MCR-47 > 2b. Though in general the analogues that showed potent activity against topoisomerase I (1a, 1b) also showed potent in vitro inhibition of tumor cell growth, the antitumor activity of the anti-topoisomerase I inactive 1d and 2a were intriguing. COMPARE analyses confirmed that the topoisomerase I is the primary target for 1a and 1b; however, other target(s) or pathway(s) may also be involved, with PLD1 and MERTK suggested. Further investigation of these molecular targets against these indolocarbazoles is warranted.


Subject(s)
Antineoplastic Agents/chemistry , Carbazoles/chemistry , DNA Topoisomerases, Type I/metabolism , Indoles/chemistry , Neoplasms/drug therapy , Neoplasms/enzymology , Topoisomerase I Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/pharmacology , Structure-Activity Relationship , Topoisomerase I Inhibitors/pharmacology
7.
Bioorg Med Chem Lett ; 20(18): 5389-93, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20719505

ABSTRACT

Apoptosis is a highly regulated process by which excessive cells are eliminated in order to maintain normal cell development and tissue homeostasis. Resistance to apoptosis often contributes to failure in cancer prevention and treatment. Apoptotic cell death regulators are considered important targets for discovery and development of new therapeutic agents in oncology research. A class of novel aza-lupane triterpenoids were designed, synthesized, and evaluated for antitumor activity against a panel of cancer cell lines of different histogenic origin and for ability to induce apoptosis. 3,30-Bis(aza) derivatives were identified not only to possess improved cytotoxicity compared to the natural product betulinic acid but also to affect cell death predominantly via apoptosis, whereas the mono(aza) derivatives apparently triggered cell death via different, non-apoptotic pathway(s).


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Triterpenes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Drug Screening Assays, Antitumor , Humans , Neoplasms/drug therapy , Pentacyclic Triterpenes , Structure-Activity Relationship , Triterpenes/chemical synthesis , Betulinic Acid
8.
Bioorg Med Chem Lett ; 19(8): 2168-71, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19286375

ABSTRACT

New A-ring modified betulin and dihydrobetulin derivatives possessing the 2-cyano-1-en-3-one moiety were prepared and tested for cytotoxicity in seven cancer cell lines. The most active agent 9a synthesized in this account was further demonstrated to induce apoptosis and to activate caspases in malignant melanoma cells.


Subject(s)
Growth Inhibitors/chemical synthesis , Growth Inhibitors/toxicity , Triterpenes/chemical synthesis , Triterpenes/toxicity , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/toxicity , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Pentacyclic Triterpenes , Betulinic Acid
9.
Bioorg Med Chem ; 14(13): 4610-26, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16513358

ABSTRACT

Pyranocoumarin compounds were identified to embody a novel and unique pharmacophore for anti-TB activity. A systematic approach was taken to investigate the structural characteristics. Focused libraries of compounds were synthesized and evaluated for their anti-TB activity in primary screening assays. Compounds shown to be active were further determined for MIC and MBC values. Three of the four bactericidal compounds (16, 17c, and 18f) were amino derivatives, with MIC values of 16 microg/mL and respective MBC values of 32, 32, and 64 microg/mL.


Subject(s)
Antibiotics, Antitubercular/chemistry , Antibiotics, Antitubercular/pharmacology , Mycobacterium tuberculosis/drug effects , Pyranocoumarins/chemistry , Pyranocoumarins/pharmacology , Antibiotics, Antitubercular/chemical synthesis , Microbial Sensitivity Tests , Pyranocoumarins/chemical synthesis
10.
Pulm Pharmacol Ther ; 17(2): 105-10, 2004.
Article in English | MEDLINE | ID: mdl-15123232

ABSTRACT

The pathology of acute lung injury (ALI) is often modeled in animal studies by the administration of lipopolysaccharide (LPS), which results in an endotoxemia with sequelae similar to that seen in acute respiratory distress syndrome (ARDS). Here we report the results of two studies designed to examine the efficacy of a novel agent, 2,3-diacetyloxybenzoic acid (2,3-DABA), in the treatment of LPS-induced ALI. In two separate animal models, 2,3-DABA was effective in significantly reducing lung microvascular permeability, a condition commonly seen in ARDS, which results in pulmonary edema and respiratory insufficiency. In each model, it is demonstrated that the mechanism by which 2,3-DABA exerts this effect occurs subsequent to the recruitment of neutrophils to the site of inflammation. Lung permeability was significantly decreased in both models by treatment with 2,3-DABA, suggesting that this agent, either alone or in combination therapy, may be useful in the treatment of ALI associated with ARDS.


Subject(s)
Hydroxybenzoates/pharmacology , Prodrugs/pharmacology , Respiratory Distress Syndrome/drug therapy , Acetates , Animals , Blood-Air Barrier/drug effects , Capillary Permeability/drug effects , Disease Models, Animal , Endotoxins , Guinea Pigs , Lipopolysaccharides , Lung/blood supply , Neutrophils/pathology , Respiratory Distress Syndrome/chemically induced , Sheep
11.
Bioorg Med Chem ; 12(5): 1199-207, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14980631

ABSTRACT

Naturally occurring anti-HIV-1 agent (+)-calanolide A was found to be active against all of the strains of Mycobacterium tuberculosis tested, including those resistant to the standard antitubercular drugs. Efficacy evaluations in macrophages revealed that (+)-calanolide A significantly inhibited intracellular replication of M. tuberculosis H37Rv at concentrations below the MIC observed in vitro. Preliminary mechanistic studies indicated that (+)-calanolide A rapidly inhibits RNA and DNA synthesis followed by an inhibition of protein synthesis. Compared with known inhibitors, this scenario is more similar to effects observed with rifampin, an inhibitor of RNA synthesis. Since (+)-calanolide A was active against a rifampin-resistant strain, it is believed that these two agents may involve different targets. (+)-Calanolide A and its related pyranocoumarins are the first class of compounds identified to possess antimycobacterial and antiretroviral activities, representing a new pharmacophore for anti-TB activity.


Subject(s)
Anti-HIV Agents/pharmacology , Antitubercular Agents/pharmacology , Coumarins/pharmacology , Mycobacterium tuberculosis/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols , Cell Line , Chlorocebus aethiops , Cisplatin , DNA/biosynthesis , Drug Resistance, Bacterial , Ifosfamide , Inhibitory Concentration 50 , Macrophages/microbiology , Microbial Sensitivity Tests , Mitomycin , Pyranocoumarins/chemistry , Pyranocoumarins/pharmacology , RNA/biosynthesis , Rifampin , Vero Cells , Virus Replication/drug effects
12.
HIV Clin Trials ; 3(6): 435-50, 2002.
Article in English | MEDLINE | ID: mdl-12501127

ABSTRACT

BACKGROUND: (+)-Calanolide A is a naturally occurring nonnucleoside reverse transciptase inhibitor (NNRTI) that exhibits enhanced activity against HIV-1 isolates with the Y181C mutation and retains activity against HIV-1 isolates with dual Y181C and K103N mutations. Previous studies have demonstrated that (+)-calanolide A has a favorable safety profile in both animal and human subjects. METHOD: In this study, the safety and pharmacokinetics of multiple escalating doses of (+)-calanolide A were evaluated in a total of 47 healthy, HIV-seronegative individuals. RESULTS: All adverse events seen in the study were mild to moderate in intensity and were transient. The most common adverse events seen were headache, dizziness, nausea, and taste perversion (oily aftertaste). Laboratory abnormalities were determined to be clinically insignificant or unrelated to (+)-calanolide A administration. No dose-related pattern in adverse event or laboratory abnormality incidence was apparent. In all cohorts examined, administration of (+)-calanolide A produced highly variable plasma levels and absorption profiles. No accumulation of parent compound was seen over the 5-day treatment course, with the day 5 area under the curve (AUC) being approximately one half of that seen on the first day of dosing. Steady-state trough plasma levels were determined in the two highest dose cohorts (600 mg and 800 mg bid for 5 days). Mean elimination half-life in the two highest dosing cohorts combined was 15.5 hours in men and 35.2 hours in women. CONCLUSION: These pharmacokinetic properties, together with the benign safety profile, and unique in vitro resistance pattern warrant the continued development of this potential new antiviral agent.


Subject(s)
Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacokinetics , Coumarins/administration & dosage , Coumarins/pharmacokinetics , Reverse Transcriptase Inhibitors/administration & dosage , Reverse Transcriptase Inhibitors/pharmacokinetics , Adult , Anti-HIV Agents/adverse effects , Anti-HIV Agents/blood , Area Under Curve , Cohort Studies , Coumarins/adverse effects , Coumarins/blood , Dose-Response Relationship, Drug , Female , HIV Infections/drug therapy , HIV-1 , Humans , Male , Pyranocoumarins , Reference Values , Reverse Transcriptase Inhibitors/adverse effects , Reverse Transcriptase Inhibitors/blood
13.
Antivir Chem Chemother ; 13(1): 39-59, 2002 Jan.
Article in English | MEDLINE | ID: mdl-12180648

ABSTRACT

A series of coumarin and pyranocoumarin analogues were evaluated in vitro for antiviral efficacy against measles virus (MV), strain Chicago. Of the 22 compounds tested for inhibition, six were found to have selectivity indices greater than 10. These were compounds 5-hydroxy-7-propionyloxy-4-propylcoumarin (2a), 5,7-bis(tosyloxy)-4-propylcoumarin (7); 5-hydroxy-4-propyl-7-tosyloxy-coumarin (8); 6,6-dimethyl-9-propionyloxy-4-propyl-2H,6H-benzo[1,2-b:3,4-b']dipyran-2-one (9); 6,6-dimethyl-9-pivaloyloxy-4-propyl-2H,6H-benzo[1,2-b:3,4-b']dipyran-2-one (10); and 7,8-cis-10,11,12-trans-4-propyl-6,6,10,11-tetramethyl-7,8,9-trihydroxy-2H,6H,12H-benzo[1 ,2-b:3,4-b':5,6-b'']tripyran-2-one (18). Three of the active drugs were propyl coumarin analogues (2a, 7 and 8), two were dipyranone or chromeno-coumarins (9 and 10), and one was a benzotripyranone with a coumarin nucleus (18). Some appeared to be rather specific and potent inhibitors of MV with EC50 values ranging from 0.2 to 50 microg/ml and the majority of the EC50 values being less than 5 pg/ml. The compounds inhibited an additional nine strains of MV, and in virucidal tests the drugs did not physically disrupt the virion to inhibit virus replication. The inhibitory activity for one of the compounds tested (7) was somewhat dependent on virus concentration and it was still active when added to cells up to 24 h after virus exposure. When used in combination with ribavirin, compound 7 appeared not to profoundly affect the antiviral efficacy of ribavirin or its cell-associated toxicity. However, a slightly antagonistic MV-inhibitory effect was observed at the highest concentration of ribavirin used in combination with most concentrations of compound 7 tested. This and related compounds may be valuable leads in the development of a potent and selective class of MV inhibitors that could be used in future in the clinic.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Coumarins/chemical synthesis , Coumarins/pharmacology , Measles virus/drug effects , Pyranocoumarins/chemical synthesis , Pyranocoumarins/pharmacology , Animals , Antiviral Agents/chemistry , Cells, Cultured , Chlorocebus aethiops , Coloring Agents/metabolism , Coumarins/chemistry , Cytopathogenic Effect, Viral , Drug Synergism , Humans , Inhibitory Concentration 50 , Measles virus/growth & development , Measles virus/metabolism , Neutral Red/metabolism , Pyranocoumarins/chemistry , Ribavirin/pharmacology , Structure-Activity Relationship , Time Factors , Virion/drug effects , Virion/metabolism , Virus Replication/drug effects
14.
Bioorg Med Chem ; 10(8): 2795-802, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12057669

ABSTRACT

A series of flavonoids, chalcones and chalcone-like compounds were evaluated for inhibitory activity against Mycobacterium tuberculosis H37Rv. Among them, eight compounds exhibited >90% inhibition on the growth of the bacteria at a concentration of 12.5 microg/mL. Chalcones 1-(2-hydroxyphenyl)-3-(3-chlorophenyl)-2-propen-1-one (22) and 1-(2-hydroxyphenyl)-3-(3-iodophenyl)-2-propen-1-one (37) demonstrated 90 and 92% inhibition, respectively. Chalcone-like compounds (heterocyclic ring-substituted 2-propen-1-one) 1-(4-fluorophenyl)-3-(pyridin-3-yl)-2-propen-1-one (48), 1-(3-hydroxyphenyl)-3-(phenanthren-9-yl)-2-propen-1-one (49), 1-(pyridin-3-yl)-3-(phenanthen-9-yl)-2-propen-1-one (50) and 1-(furan-2-yl)-3-phenyl-2-propen-1-one (51) exhibited 98, 97, 96 and 96% inhibition, respectively. The actual minimum inhibitory concentrations (MIC), defined as the lowest concentration inhibiting 99% of the inoculum, for 22, 37, 48, 49, 50 and 51 were 20.3, 31.5, 48.3, >35.7, 6.8 and 19.2, respectively. A hydrophobic substituent on one aromatic ring, and a hydrogen-bonding group on the other aromatic ring resulted in increased anti-TB activity of the chalcones and chalcone-like compounds. Flavones and flavanones are more geometrically constrained than the corresponding chalcone analogues. The decreased activity of the flavones with respect to the chalcones may be due to the confinement of the terminal aromatic rings to the same plane.


Subject(s)
Antitubercular Agents/chemical synthesis , Chalcone/chemical synthesis , Flavonoids/chemical synthesis , Antitubercular Agents/pharmacology , Chalcone/pharmacology , Flavonoids/pharmacology , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Conformation , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship
15.
J Org Chem ; 61(22): 7697-7701, 1996 Nov 01.
Article in English | MEDLINE | ID: mdl-11667723

ABSTRACT

The Wittig reagent [(diethoxyphosphinyl)methylidene]triphenylphosphorane (1b) has been successfully synthesized for the first time via its phosphonium triflate salt (4a), by treating (diethoxyphosphinyl)methyl triflate with triphenylphosphine. The procedure has been applied to the synthesis of other phosphoranes and phosphonium salts. The new Wittig reagents thus synthesized were treated with various aldehydes and an activated ketone, affording the corresponding alpha,beta-unsaturated phosphonates. Triphenylphosphorane 1b and triphenylphosphonium 4a led to both cis and trans isomers with the latter being predominant, while trans isomers were almost exclusively formed when tributyl reagents (1c and 4d) were used.

SELECTION OF CITATIONS
SEARCH DETAIL
...