Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(27): eadl5822, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959317

ABSTRACT

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.


Subject(s)
Carbon Cycle , Carbon Dioxide , Eucalyptus , Forests , Phosphorus , Eucalyptus/metabolism , Carbon Dioxide/metabolism , Phosphorus/metabolism , Photosynthesis , Climate Change , Ecosystem , Carbon/metabolism , Models, Theoretical , Carbon Sequestration
2.
New Phytol ; 242(2): 351-371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38416367

ABSTRACT

Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.


Las características de las raíces de los bosques tropicales y las estrategias de adquisición de recursos están subrepresentadas en modelos de vegetación, lo que dificulta la predicción del efecto de cambio de clima para estos ecosistemas ricos en carbono. Los bosques tropicales a menudo tienen combinaciones únicas a nivel mundial de alta biodiversidad taxonómica y funcional, estacionalidad de precipitación, y suelos infértiles, dando lugar a patrones distintos en los rasgos y funciones de las raíces en comparación con los ecosistemas de latitudes más altas. Integramos los avances recientes en nuestra comprensión de la función subterránea de los bosques tropicales en modelos de vegetación, centrándonos en la adquisición de agua y nutrientes. Ofrecemos comparaciones de avances recientes en la comprensión empírica y de modelos de las características de las raíces que representan procesos funcionales importantes en los bosques tropicales. Nos centramos en: (1) estrategias de raíces finas para adquisición de recursos del suelo, (2) acoplamiento y compensaciones entre adquisición del agua y de nutrientes, y (3) vínculos entre funciones sobre tierra y debajo del superficie en bosques tropicales. Sugerimos vías para representar estas comunidades de plantas extremadamente diversas en grupos computacionalmente manejables y ecológicamente significativos en modelos. Los bosques tropicales se están calentando, tienen cambios en los regímenes de lluvias, y tienen una exacerbación de la escasez de nutrientes del suelo causada por el elevado CO2 atmosférico. La representación precisa de las funciones de los bosques tropicales en modelos es crucial para comprender las interacciones de este bioma con el clima.


Subject(s)
Ecosystem , Plant Roots , Nitrogen , Forests , Soil , Plants , Water , Tropical Climate , Trees
3.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Article in English | MEDLINE | ID: mdl-38334166

ABSTRACT

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Subject(s)
Carbon Dioxide , Photosynthesis , Photosynthesis/physiology , Forests , Electron Transport , Plant Leaves
4.
Glob Chang Biol ; 28(21): 6366-6369, 2022 11.
Article in English | MEDLINE | ID: mdl-36184908

ABSTRACT

The CO2 fertilization effect in tropical forests is a key factor for the global land carbon sink. We show that the normalized CO2 effect on tropical vegetation carbon was c. 70% lower in seedling CO2 experiments without nutrient fertilizers and c. 50% and 70% lower in models that consider nitrogen and phosphorus cycles, based on two model ensembles. The inadequate representation or lack of nutrient cycles in Earth System models likely leads to overestimating future tropical carbon gains.


Subject(s)
Fertilizers , Soil , Carbon , Carbon Dioxide , Fertilization , Forests , Nitrogen/analysis , Nutrients , Phosphorus , Trees , Tropical Climate
5.
New Phytol ; 234(4): 1126-1143, 2022 05.
Article in English | MEDLINE | ID: mdl-35060130

ABSTRACT

In the tropical rainforest of Amazonia, phosphorus (P) is one of the main nutrients controlling forest dynamics, but its effects on the future of the forest biomass carbon (C) storage under elevated atmospheric CO2 concentrations remain uncertain. Soils in vast areas of Amazonia are P-impoverished, and little is known about the variation or plasticity in plant P-use and -acquisition strategies across space and time, hampering the accuracy of projections in vegetation models. Here, we synthesize current knowledge of leaf P resorption, fine-root P foraging, arbuscular mycorrhizal symbioses, and root acid phosphatase and organic acid exudation and discuss how these strategies vary with soil P concentrations and in response to elevated atmospheric CO2 . We identify knowledge gaps and suggest ways forward to fill those gaps. Additionally, we propose a conceptual framework for the variations in plant P-use and -acquisition strategies along soil P gradients of Amazonia. We suggest that in soils with intermediate to high P concentrations, at the plant community level, investments are primarily directed to P foraging strategies via roots and arbuscular mycorrhizas, whereas in soils with intermediate to low P concentrations, investments shift to prioritize leaf P resorption and mining strategies via phosphatases and organic acids.


Subject(s)
Mycorrhizae , Phosphorus , Carbon Dioxide , Mycorrhizae/physiology , Plant Roots , Plants , Soil
6.
Tree Physiol ; 42(5): 922-938, 2022 05 09.
Article in English | MEDLINE | ID: mdl-33907798

ABSTRACT

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from -0.003 to -0.065 µmol CO2 m-2 s-1 day-1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees.


Subject(s)
Ecosystem , Trees , Carbon Dioxide , Photosynthesis , Plant Leaves
7.
Surg Case Rep ; 7(1): 227, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674060

ABSTRACT

BACKGROUND: Anastomotic leak is a major cause of morbidity and mortality of patients worldwide, and it has remained stable over the last years. Routine construction of protective ileostomy is associated with stoma and negatively affects patients' quality of life. Developing another technique to minimize those drawbacks with at least the same clinical success can help patients with anastomotic leak. We present the novel technique "Hidden Ileostomy" as an alternative to protective ileostomy that can achieve that balance. MATERIALS AND METHODS: Eight patients presented to our department underwent the novel technique "Hidden Ileostomy" as a rescue procedure for different reasons. The associated risk factors and clinical scenarios, together with the follow-up data, are presented. RESULTS: For the eight cases in this study, one patient was ASA grade 1, 3 patients were classified as ASA grade 2, and 4 were grade 3. The mean ± SD operative time and blood loss were 196.3 ± 16.4 min and 325 ± 204.6 ml, respectively. The hidden ileostomy was removed after an average of 8 days. Only Case 6 reported an anastomotic leak on a postoperative day 10. CONCLUSION: A hidden ileostomy is an alternative and feasible technique in selected cases in colorectal surgery. This technique could be adopted in our practice instead of routine instruction of ileostomy, especially in the equivocal anastomosis.

8.
Glob Chang Biol ; 26(10): 5856-5873, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32654340

ABSTRACT

Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and P for young individuals of woody and non-woody species, we present a meta-analysis of P limitation impacts on plant growth, physiological, and morphological response to eCO2 . We show that low P availability attenuated plant photosynthetic response to eCO2 by approximately one-quarter, leading to a reduced, but still positive photosynthetic response to eCO2 compared to those under high P availability. Furthermore, low P limited plant aboveground, belowground, and total biomass responses to eCO2 , by 14.7%, 14.3%, and 12.4%, respectively, equivalent to an approximate halving of the eCO2 responses observed under high P availability. In comparison, low P availability did not significantly alter the eCO2 -induced changes in plant tissue nutrient concentration, suggesting tissue nutrient flexibility is an important mechanism allowing biomass response to eCO2 under low P availability. Low P significantly reduced the eCO2 -induced increase in leaf area by 14.3%, mirroring the aboveground biomass response, but low P did not affect the eCO2 -induced increase in root length. Woody plants exhibited stronger attenuation effect of low P on aboveground biomass response to eCO2 than non-woody plants, while plants with different mycorrhizal associations showed similar responses to low P and eCO2 interaction. This meta-analysis highlights crucial data gaps in capturing plant responses to eCO2 and low P availability. Field-based experiments with longer-term exposure of both CO2 and P manipulations are critically needed to provide ecosystem-scale understanding. Taken together, our results provide a quantitative baseline to constrain model-based hypotheses of plant responses to eCO2 under P limitation, thereby improving projections of future global change impacts.


Subject(s)
Carbon Dioxide , Ecosystem , Humans , Phosphorus , Photosynthesis , Plants
9.
Plant Cell Environ ; 43(4): 965-980, 2020 04.
Article in English | MEDLINE | ID: mdl-31760666

ABSTRACT

Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.


Subject(s)
Trees/physiology , Wood/physiology , Cell Wall/physiology , Climate Change , Dehydration , Trees/anatomy & histology , Water/metabolism , Wood/anatomy & histology , Xylem/anatomy & histology , Xylem/physiology
10.
FASEB J ; 21(12): 3142-52, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17494991

ABSTRACT

Cyclin L1 and cyclin L2 are two closely related members of the cyclin family that contain C-terminal arginine- and serine-rich (RS) domains and are localized in the splicing factor compartment (nuclear speckles). Here we applied photobleaching techniques to show that a green fluorescent protein (GFP) fusion protein of cyclin L1, in contrast to cyclin L2, was not mobile within the nucleus of living COS7 cells. The objectives of this study were to 1) characterize the intranuclear localization and mobility properties of cyclin L1 in different cellular states, and 2) dissect the structural elements required for immobilization of cyclin L1. Transcriptional arrest by actinomycin D caused accumulation of GFP-cyclin L2 in rounded and enlarged nuclear speckles but did not affect the subnuclear pattern of distribution of GFP-cyclin L1. Although immobile in most phases of the cell cycle, GFP-cyclin L1 was diffusely distributed and highly mobile in the cytoplasm of metaphase cells. By analysis of a series of chimeras, deletion constructs, and a point mutant, a segment within the RS domain of cyclin L1 was identified to be necessary for the immobility of the protein in nuclear speckles. This study provides the first characterization of an immobile component of nuclear speckles.


Subject(s)
Cell Nucleus , Cyclins/metabolism , RNA Splicing , Recombinant Fusion Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Anthraquinones/metabolism , COS Cells , Cell Cycle/physiology , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Chlorocebus aethiops , Cyclins/genetics , Dactinomycin/metabolism , Fluorescence Recovery After Photobleaching , Fluorescent Dyes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...