Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(10): 103401, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533353

ABSTRACT

Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can experience strong interactions mediated by the many-body environment and form bipolaron bound states. Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the strong coupling limit, the potential substantially deviates from the exponential form valid for weak coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find excellent agreement with QMC results.

2.
Light Sci Appl ; 8: 63, 2019.
Article in English | MEDLINE | ID: mdl-31666942

ABSTRACT

The bulk-edge correspondence guarantees that the interface between two topologically distinct insulators supports at least one topological edge state that is robust against static perturbations. Here, we address the question of how dynamic perturbations of the interface affect the robustness of edge states. We illuminate the limits of topological protection for Floquet systems in the special case of a static bulk. We use two independent dynamic quantum simulators based on coupled plasmonic and dielectric photonic waveguides to implement the topological Su-Schriefer-Heeger model with convenient control of the full space- and time-dependence of the Hamiltonian. Local time-periodic driving of the interface does not change the topological character of the system but nonetheless leads to dramatic changes of the edge state, which becomes rapidly depopulated in a certain frequency window. A theoretical Floquet analysis shows that the coupling of Floquet replicas to the bulk bands is responsible for this effect. Additionally, we determine the depopulation rate of the edge state and compare it to numerical simulations.

3.
Nat Commun ; 7: 11994, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27312285

ABSTRACT

Topological quantum phases cannot be characterized by Ginzburg-Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.

4.
Phys Rev Lett ; 104(3): 033903, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366643

ABSTRACT

We describe a method to create effective gauge potentials for stationary-light polaritons. When stationary light is created in the interaction with a rotating ensemble of coherently driven double-Lambda type atoms, the equation of motion is that of a massive Schrödinger particle in a magnetic field. Since the effective interaction area for the polaritons can be made large, degenerate Landau levels can be created with degeneracy well above 100. This opens up the possibility to study the bosonic analogue of the fractional quantum Hall effect for interacting stationary-light polaritons.

5.
Phys Rev Lett ; 105(17): 173603, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-21231045

ABSTRACT

We consider the interaction of two weak probe fields of light with an atomic ensemble coherently driven by two pairs of standing wave laser fields in a tripod-type linkage scheme. The system is shown to exhibit a Dirac-like spectrum for light-matter quasiparticles with multiple dark states, termed spinor slow-light polaritons. They posses an "effective speed of light" given by the group velocity of slow light, and can be made massive by inducing a small two-photon detuning. Control of the two-photon detuning can be used to locally vary the mass including a sign flip. Particularly, this allows the implementation of the random-mass Dirac model for which localized zero-energy (midgap) states exist with unusual long-range correlations.

6.
Phys Rev Lett ; 103(1): 010502, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659130

ABSTRACT

We present a mechanism to protect quantum information stored in an ensemble of nuclear spins in a semiconductor quantum dot. When the dot is charged the nuclei interact with the spin of the excess electron through the hyperfine coupling. If this coupling is made off-resonant, it leads to an energy gap between the collective storage states and all other states. We show that the energy gap protects the quantum memory from local spin-flip and spin-dephasing noise. Effects of nonperfect initial spin polarization and inhomogeneous hyperfine coupling are discussed.

7.
Phys Rev Lett ; 102(6): 063602, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19257588

ABSTRACT

We discuss the properties of 1D stationary pulses of light in an atomic ensemble with electromagnetically induced transparency in the limit of tight spatial confinement. When the size of the wave packet becomes comparable or smaller than the absorption length of the medium, it must be described by a two-component vector which obeys the one-dimensional two-component Dirac equation with an effective mass m;{*} and effective speed of light c;{*}. Then a fundamental lower limit to the spatial width in an external potential arises from Klein tunneling and is given by the effective Compton length lambda_{C}=variant Planck's over 2pi/(m;{*}c;{*}). Since c;{*} and m;{*} can be externally controlled and can be made small, it is possible to observe effects of the relativistic dispersion for rather low energies or correspondingly on macroscopic length scales.

8.
Nature ; 438(7069): 837-41, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16341010

ABSTRACT

Techniques to facilitate controlled interactions between single photons and atoms are now being actively explored. These techniques are important for the practical realization of quantum networks, in which multiple memory nodes that utilize atoms for generation, storage and processing of quantum states are connected by single-photon transmission in optical fibres. One promising avenue for the realization of quantum networks involves the manipulation of quantum pulses of light in optically dense atomic ensembles using electromagnetically induced transparency (EIT, refs 8, 9). EIT is a coherent control technique that is widely used for controlling the propagation of classical, multi-photon light pulses in applications such as efficient nonlinear optics. Here we demonstrate the use of EIT for the controllable generation, transmission and storage of single photons with tunable frequency, timing and bandwidth. We study the interaction of single photons produced in a 'source' ensemble of 87Rb atoms at room temperature with another 'target' ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval.

9.
Phys Rev Lett ; 95(17): 170403, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16383800

ABSTRACT

We study the dynamics of an adiabatic sweep through a Feshbach resonance in a quantum gas of fermionic atoms. Analysis of the dynamical equations, supported by mean-field and many-body numerical results, shows that the dependence of the remaining atomic fraction Gamma on the sweep rate alpha varies from exponential Landau-Zener behavior for a single pair of particles to a power-law dependence for large particle number N. The power law is linear, Gamma is proportional to alpha, when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and Gamma is proportional to alpha(1/3) when it is larger. Experimental data agree well with a linear dependence, but do not conclusively rule out the Landau-Zener model.

10.
Phys Rev Lett ; 95(1): 010404, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-16090590

ABSTRACT

We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component.

11.
Phys Rev Lett ; 95(26): 260604, 2005 Dec 31.
Article in English | MEDLINE | ID: mdl-16486330

ABSTRACT

We discuss the relation between entanglement and criticality in translationally invariant harmonic lattice systems with nonrandom, finite-range interactions. We show that the criticality of the system as well as validity or breakdown of the entanglement area law are solely determined by the analytic properties of the spectral function of the oscillator system, which can easily be computed. In particular, for finite-range couplings we find a one-to-one correspondence between an area-law scaling of the bipartite entanglement and a finite correlation length. This relation is strict in the one-dimensional case and there is strong evidence for the multidimensional case. We also discuss generalizations to couplings with infinite range. Finally, to illustrate our results, a specific 1D example with nearest and next-nearest-neighbor coupling is analyzed.

12.
Phys Rev Lett ; 92(25 Pt 1): 253201, 2004 Jun 25.
Article in English | MEDLINE | ID: mdl-15245004

ABSTRACT

The advantages of light and matter-wave Sagnac interferometers--large area on one hand and high rotational sensitivity per unit area on the other--can be combined utilizing ultraslow light in cold atomic gases. While a group-velocity reduction alone does not affect the Sagnac phase shift, the associated momentum transfer from light to atoms generates a coherent matter-wave component which gives rise to a substantially enhanced rotational signal. It is shown that matter-wave sensitivity in a large-area interferometer can be achieved if an optically dense vapor at subrecoil temperatures is used. Already a noticeable enhancement of the Sagnac phase shift is possible, however, with far fewer cooling requirements.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 015602, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935192

ABSTRACT

We investigate the dynamical properties of the radiation field emitted from an excited two-level atom in a photonic crystal. If the transition frequency of the atom lies within a certain frequency range above the band edge, the emitted field consists of two components that show a different decay dynamics. In particular it is shown that one field component decreases faster than the atomic population with a decay constant depending on the distance from the atom. As a consequence, the decay rate of the electromagnetic field is spatially varying and, in general, can not be identified with the corresponding rate for the atomic population.

14.
Phys Rev Lett ; 90(13): 133601, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12689286

ABSTRACT

We discuss a decoherence insensitive method to create many-particle entanglement in a spin system with controllable collective interactions and propose an implementation in an ion trap. An adiabatic change of parameters allows a transfer from separable to a large variety of entangled eigenstates. We show that the Hamiltonian can have a supersymmetry permitting an explicit construction of the ground state at all times. Of particular interest is a transition in a nondegenerate ground state with a finite energy gap since here the influence of collective as well as individual decoherence mechanisms is substantially reduced. A lower bound for the energy gap is given.

15.
Phys Rev Lett ; 87(3): 037901, 2001 Jul 16.
Article in English | MEDLINE | ID: mdl-11461592

ABSTRACT

We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.

16.
Phys Rev Lett ; 86(10): 2006-9, 2001 Mar 05.
Article in English | MEDLINE | ID: mdl-11289841

ABSTRACT

We study stimulated Brillouin scattering (SBS) in an ultradispersive coherent medium, and show that the properties of SBS change drastically when the group velocity of light in the material approaches or becomes less than the speed of sound. In particular, forward SBS not allowed in a dispersionless bulk medium takes place in the coherent medium.

17.
Phys Rev Lett ; 84(16): 3558-61, 2000 Apr 17.
Article in English | MEDLINE | ID: mdl-11019145

ABSTRACT

We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four-wave mixing in a dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that, due to the large group velocity delays associated with electromagnetically induced transparency, an extremely narrow oscillator linewidth is possible, making a narrow-band source of nonclassical radiation feasible.

18.
Phys Rev Lett ; 84(18): 4232-5, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10990653

ABSTRACT

We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles, quantum information processing, and quantum networking.

19.
Phys Rev Lett ; 84(22): 5094-7, 2000 May 29.
Article in English | MEDLINE | ID: mdl-10990875

ABSTRACT

We identify form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in electromagnetically induced transparency. The properties of dark-state polaritons such as the group velocity are determined by the mixing angle between light and matter components and can be controlled by an external coherent field as the pulse propagates. In particular, light pulses can be decelerated and "trapped" in which case their shape and quantum state are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-control technique are discussed.

20.
Opt Express ; 4(2): 107-12, 1999 Jan 18.
Article in English | MEDLINE | ID: mdl-19396263

ABSTRACT

The preparation of an optically dense ensemble of three- level systems in dark states of the interaction with coherent radiation is discussed. It is shown that methods involving spontaneous emissions of photons such as Raman optical pumping fail to work beyond a critical density due to multiple scattering and trapping of these photons and the associated decay of the dark state(s). In optically thick media coherent-state preparation is only possible by entirely coherent means such as stimulated Raman adiabatic passage (STIRAP). It is shown that STIRAP is the underlying physical mechanism for electromagnetically induced transparency (EIT).

SELECTION OF CITATIONS
SEARCH DETAIL
...