Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(3-2): 035301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632731

ABSTRACT

In this paper, the underlying problem with the color-gradient (CG) method in handling density-contrast fluids is explored. It is shown that the CG method is not fluid invariant. Based on nondimensionalizing the CG method, a phase-field interface-capturing model is proposed which tackles the difficulty of handling density-contrast fluids. The proposed formulation is developed for incompressible, immiscible two-fluid flows without phase-change phenomena, and a solver based on the lattice Boltzmann method is proposed. Coupled with an available robust hydrodynamic solver, a binary fluid flow package that handles fluid flows with high density and viscosity contrasts is presented. The macroscopic and lattice Boltzmann equivalents of the formulation, which make the physical interpretation of it easier, are presented. In contrast to existing color-gradient models where the interface-capturing equations are coupled with the hydrodynamic ones and include the surface tension forces, the proposed formulation is in the same spirit as the other phase-field models such as the Cahn-Hilliard and the Allen-Cahn equations and is solely employed to capture the interface advected due to a flow velocity. As such, similarly to other phase-field models, a so-called mobility parameter comes into play. In contrast, the mobility is not related to the density field but a constant coefficient. This leads to a formulation that avoids individual speed of sound for the different fluids. On the lattice Boltzmann solver side, two separate distribution functions are adopted to solve the formulation, and another one is employed to solve the Navier-Stokes equations, yielding a total of three equations. Two series of numerical tests are conducted to validate the accuracy and stability of the model, where we compare simulated results with available analytical and numerical solutions, and good agreement is observed. In the first set the interfacial evolution equations are assessed, while in the second set the hydrodynamic effects are taken into account.

2.
Entropy (Basel) ; 26(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38539785

ABSTRACT

Hyper-ballistic diffusion is shown to arise from a simple model of microswimmers moving through a porous media while competing for resources. By using a mean-field model where swimmers interact through the local concentration, we show that a non-linear Fokker-Planck equation arises. The solution exhibits hyper-ballistic superdiffusive motion, with a diffusion exponent of four. A microscopic simulation strategy is proposed, which shows excellent agreement with theoretical analysis.

3.
Phys Rev Lett ; 119(15): 154503, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29077469

ABSTRACT

In this Letter we give experimental grounding for the remarkable observation made by Furuberg et al. [Phys. Rev. Lett. 61, 2117 (1988)PRLTAO0031-900710.1103/PhysRevLett.61.2117] of an unusual dynamic scaling for the pair correlation function N(r,t) during the slow drainage of a porous medium. Those authors use an invasion percolation algorithm to show numerically that the probability of invasion of a pore at a distance r away and after a time t from the invasion of another pore scales as N(r,t)∝r^{-1}f(r^{D}/t), where D is the fractal dimension of the invading cluster and the function f(u)∝u^{1.4}, for u≪1 and f(u)∝u^{-0.6}, for u≫1. Our experimental setup allows us to have full access to the spatiotemporal evolution of the invasion, which is used to directly verify this scaling. Additionally, we connect two important theoretical contributions from the literature to explain the functional dependency of N(r,t) and the scaling exponent for the short-time regime (t≪r^{D}). A new theoretical argument is developed to explain the long-time regime exponent (t≫r^{D}).

4.
Phys Rev Lett ; 117(2): 028002, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447527

ABSTRACT

We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

5.
Article in English | MEDLINE | ID: mdl-24329348

ABSTRACT

It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From measurements of global pressure evolution, histograms of saturation, and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036308, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905213

ABSTRACT

We report on experimental studies of steady-state two-phase flow in a quasi-two-dimensional porous medium. The wetting and the nonwetting phases are injected simultaneously from alternating inlet points into a Hele-Shaw cell containing one layer of randomly distributed glass beads, initially saturated with wetting fluid. The high viscous wetting phase and the low viscous nonwetting phase give a low viscosity ratio M=10(-4). Transient behavior of this system is observed in time and space. However, we find that at a certain distance behind the initial front a "local" steady-state develops, sharing the same properties as the later "global" steady state. In this state the nonwetting phase is fragmented into clusters, whose size distribution is shown to obey a scaling law, and the cutoff cluster size is found to be inversely proportional to the capillary number. The steady state is dominated by bubble dynamics, and we measure a power-law relationship between the pressure gradient and the capillary number. In fact, we demonstrate that there is a characteristic length scale in the system, depending on the capillary number through the pressure gradient that controls the steady-state dynamics.


Subject(s)
Models, Theoretical , Rheology/methods , Solutions/chemistry , Computer Simulation , Phase Transition , Porosity , Wettability
7.
Phys Rev Lett ; 102(7): 074502, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257676

ABSTRACT

We study experimentally the case of steady-state simultaneous two-phase flow in a quasi-two-dimensional porous media. The dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution as well as the relation |nablaP| proportional, sqrt[Ca] between the pressure gradient in the system and the capillary number.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(2 Pt 1): 021301, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18352016

ABSTRACT

Pattern forming processes are abundant in nature. Here, we report on a particular pattern forming process. Upon withdrawal of fluid from a particle-fluid dispersion in a Hele-Shaw cell, the particles are shown to be left behind in intriguing mazelike patterns. The particles, initially being uniformly spread out in a disc, are slowly pulled inwards and together by capillary and pressure forces. Invading air forms branching fingers, whereas the particles are compiled into comparably narrow branches. These branches are connected in a treelike structure, taking the form of a maze. The characteristic length scale within the structure is found to decrease with the volume fraction of the particles and increase with the plate separation in the Hele-Shaw cell. We present a simulator designed to simulate this phenomenon, which reproduces qualitatively and quantitatively the experiments, as well as a theory that can predict the observed wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...