Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(45): e2309743120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922328

ABSTRACT

Oxidation of phosphite (HPO32-) to phosphate (HPO42-) releases electrons at a very low redox potential (E0'= -690 mV) which renders phosphite an excellent electron donor for microbial energy metabolism. To date, two pure cultures of strictly anaerobic bacteria have been isolated that run their energy metabolism on the basis of phosphite oxidation, the Gram-negative Desulfotignum phosphitoxidans (DSM 13687) and the Gram-positive Phosphitispora fastidiosa (DSM 112739). Here, we describe the key enzyme for dissimilatory phosphite oxidation in these bacteria. The enzyme catalyzed phosphite oxidation in the presence of adenosine monophosphate (AMP) to form adenosine diphosphate (ADP), with concomitant reduction of oxidized nicotinamide adenine dinucleotide (NAD+) to reduced nicotinamide adenine dinucleotide (NADH). The enzyme of P. fastidiosa was heterologously expressed in Escherichia coli. It has a molecular mass of 35.2 kDa and a high affinity for phosphite and NAD+. Its activity was enhanced more than 100-fold by addition of ADP-consuming adenylate kinase (myokinase) to a maximal activity between 30 and 80 mU x mg protein-1. A similar NAD-dependent enzyme oxidizing phosphite to phosphate with concomitant phosphorylation of AMP to ADP is found in D. phosphitoxidans, but this enzyme could not be heterologously expressed. Based on sequence analysis, these phosphite-oxidizing enzymes are related to nucleotide-diphosphate-sugar epimerases and indeed represent AMP-dependent phosphite dehydrogenases (ApdA). A reaction mechanism is proposed for this unusual type of substrate-level phosphorylation reaction.


Subject(s)
NAD , Phosphites , NAD/metabolism , Phosphites/metabolism , Oxidation-Reduction , Adenosine Monophosphate/metabolism , Adenosine Diphosphate/metabolism , Phosphates
2.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 8): 217-223, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37565839

ABSTRACT

Members of the GCN5-related N-acetyltransferase (GNAT) family are found in all domains of life and are involved in processes ranging from protein synthesis and gene expression to detoxification and virulence. Due to the variety of their macromolecular targets, GNATs are a highly diverse family of proteins. Currently, 3D structures of only a small number of GNAT representatives are available and thus the family remains poorly characterized. Here, the crystal structure of the guanidine riboswitch-associated GNAT from Lactobacillus curiae (LcGNAT) that acetylates canavanine, a structural analogue of arginine with antimetabolite properties, is reported. LcGNAT shares the conserved fold of the members of the GNAT superfamily, but does not contain an N-terminal ß0 strand and instead contains a C-terminal ß7 strand. Its P-loop, which coordinates the pyrophosphate moiety of the acetyl-coenzyme A cosubstrate, is degenerated. These features are shared with its closest homologues in the polyamine acetyltransferase subclass. Site-directed mutagenesis revealed a central role of the conserved residue Tyr142 in catalysis, as well as the semi-conserved Tyr97 and Glu92, suggesting that despite its individual substrate specificity LcGNAT performs the classical reaction mechanism of this family.


Subject(s)
Acetyltransferases , Acetyltransferases/chemistry , Crystallography, X-Ray
3.
Chembiochem ; 24(19): e202300408, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37503755

ABSTRACT

The N2A segment of titin functions as a pivotal hub for signal transduction and interacts with various proteins involved in structural support, chaperone activities, and transcriptional regulation. Notably, the "unique N2A" (UN2A) subdomain has been shown to interact with the stress-regulated cardiac ankyrin repeat protein (CARP), which contributes to the regulation of sarcomeric stiffness. Previously, the UN2A domain's three-dimensional structure was modelled based on its secondary structure content identified by NMR spectroscopy, considering the domain in isolation. In this study, we report experimental long-range distance distributions by electron paramagnetic resonance (EPR) spectroscopy between the three helixes within the UN2A domain linked to the immunoglobulin domain I81 in the presence and absence of CARP. The data confirm the central three-helix bundle fold of UN2A and show that this adopts a compact and stable conformation in absence of CARP. After binding to CARP, no significant conformational change was observed, suggesting that the UN2A domain retains its structure upon binding to CARP thereby, mediating the interaction approximately as a rigid-body.

4.
J Muscle Res Cell Motil ; 44(4): 255-270, 2023 12.
Article in English | MEDLINE | ID: mdl-37258982

ABSTRACT

The thick filament-associated A-band region of titin is a highly repetitive component of the titin chain with important scaffolding properties that support thick filament assembly. It also has a demonstrated link to human disease. Despite its functional significance, it remains a largely uncharacterized part of the titin protein. Here, we have performed an analysis of sequence and structure conservation of A-band titin, with emphasis on poly-FnIII tandem components. Specifically, we have applied multi-dimensional sequence pairwise similarity analysis to FnIII domains and complemented this with the crystallographic elucidation of the 3D-structure of the FnIII-triplet A84-A86 from the fourth long super-repeat in the C-zone (C4). Structural models serve here as templates to map sequence conservation onto super-repeat C4, which we show is a prototypical representative of titin's C-zone. This templating identifies positionally conserved residue clusters in C super-repeats with the potential of mediating interactions to thick-filament components. Conservation localizes to two super-repeat positions: Ig domains in position 1 and FnIII domains in position 7. The analysis also allows conclusions to be drawn on the conserved architecture of titin's A-band, as well as revisiting and expanding the evolutionary model of titin's A-band.


Subject(s)
Muscle Proteins , Sarcomeres , Humans , Connectin/metabolism , Muscle Proteins/metabolism , Sarcomeres/metabolism
5.
Biomedicines ; 11(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36830985

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease caused by antibodies targeting the neuromuscular junction (NJ) of skeletal muscles. The major MG autoantigen is nicotinic acetylcholine receptor. Other autoantigens at the NJ include MuSK, LRP4 and agrin. Autoantibodies to the intra-sarcomeric striated muscle-specific gigantic protein titin, although not directed to the NJ, are invaluable biomarkers for thymoma and MG disease severity. Thymus and thymoma are critical in MG mechanisms and management. Titin autoantibodies bind to a 30 KDa titin segment, the main immunogenic region (MIR), consisting of an Ig-FnIII-FnIII 3-domain tandem, termed I109-I111. In this work, we further resolved the localization of titin epitope(s) to facilitate the development of more specific anti-titin diagnostics. For this, we expressed protein samples corresponding to 8 MIR and non-MIR titin fragments and tested 77 anti-titin sera for antibody binding using ELISA, competition experiments and Western blots. All anti-MIR antibodies were bound exclusively to the central MIR domain, I110, and to its containing titin segments. Most antibodies were bound also to SDS-denatured I110 on Western blots, suggesting that their epitope(s) are non-conformational. No significant difference was observed between thymoma and non-thymoma patients or between early- and late-onset MG. In addition, atomic 3D-structures of the MIR and its subcomponents were elucidated using X-ray crystallography. These immunological and structural data will allow further studies into the atomic determinants underlying titin-based autoimmunity, improved diagnostics and how to eventually treat titin autoimmunity associated co-morbidities.

6.
Sci Rep ; 12(1): 22088, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36543883

ABSTRACT

Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.


Subject(s)
Guanidines , Ureohydrolases , Humans , Agmatine/metabolism , Guanidines/metabolism , Hydrolysis , Ureohydrolases/metabolism
7.
Comput Struct Biotechnol J ; 20: 5409-5419, 2022.
Article in English | MEDLINE | ID: mdl-36212532

ABSTRACT

Sequence comparison is critical for the functional assignment of newly identified protein genes. As uncharacterized protein sequences accumulate, there is an increasing need for sensitive tools for their classification. Here, we present a novel multidimensional scaling pipeline, PaSiMap, which creates a map of pairwise sequence similarities. Uniquely, PaSiMap distinguishes between unique and shared features, allowing for a distinct view of protein-sequence relationships. We demonstrate PaSiMap's efficiency in detecting sequence groups and outliers using titin's 169 immunoglobulin (Ig) domains. We show that Ig domain similarity is hierarchical, being firstly determined by chain location, then by the loop features of the Ig fold and, finally, by super-repeat position. The existence of a previously unidentified domain repeat in the distal, constitutive I-band is revealed. Prototypic Igs, plus notable outliers, are identified and thereby domain classification improved. This re-classification can now guide future molecular research. In summary, we demonstrate that PaSiMap is a sensitive tool for the classification of protein sequences, which adds a new perspective in the understanding of inter-protein relationships. PaSiMap is applicable to any biological system defined by a linear sequence, including polynucleotide chains.

8.
EMBO Rep ; 22(10): e48018, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34402565

ABSTRACT

Striated muscle undergoes remodelling in response to mechanical and physiological stress, but little is known about the integration of such varied signals in the myofibril. The interaction of the elastic kinase region from sarcomeric titin (A168-M1) with the autophagy receptors Nbr1/p62 and MuRF E3 ubiquitin ligases is well suited to link mechanosensing with the trophic response of the myofibril. To investigate the mechanisms of signal cross-talk at this titin node, we elucidated its 3D structure, analysed its response to stretch using steered molecular dynamics simulations and explored its functional relation to MuRF1 and Nbr1/p62 using cellular assays. We found that MuRF1-mediated ubiquitination of titin kinase promotes its scaffolding of Nbr1/p62 and that the process can be dynamically down-regulated by the mechanical unfolding of a linker sequence joining titin kinase with the MuRF1 receptor site in titin. We propose that titin ubiquitination is sensitive to the mechanical state of the sarcomere, the regulation of sarcomere targeting by Nbr1/p62 being a functional outcome. We conclude that MuRF1/Titin Kinase/Nbr1/p62 constitutes a distinct assembly that predictably promotes sarcomere breakdown in inactive muscle.


Subject(s)
Autophagy , Sarcomeres , Connectin/genetics , Connectin/metabolism , Muscle, Skeletal/metabolism , Sarcomeres/metabolism , Ubiquitination
9.
J Clin Med ; 10(5)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801198

ABSTRACT

Three members of the obscurin protein family that contain tandem kinase domains with important signaling functions for cardiac and striated muscles are the giant protein obscurin, its obscurin-associated kinase splice isoform, and the striated muscle enriched protein kinase (SPEG). While there is increasing evidence for the specific roles that each individual kinase domain plays in cross-striated muscles, their biology and regulation remains enigmatic. Our present study focuses on kinase domain 1 and the adjacent low sequence complexity inter-kinase domain linker in obscurin and SPEG. Using Phos-tag gels, we show that the linker in obscurin contains several phosphorylation sites, while the same region in SPEG remained unphosphorylated. Our homology modeling, mutational analysis and molecular docking demonstrate that kinase 1 in obscurin harbors all key amino acids important for its catalytic function and that actions of this domain result in autophosphorylation of the protein. Our bioinformatics analyses also assign a list of putative substrates for kinase domain 1 in obscurin and SPEG, based on the known and our newly proposed phosphorylation sites in muscle proteins, including obscurin itself.

10.
J Gen Physiol ; 153(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33836065

ABSTRACT

The N2A segment of titin is a main signaling hub in the sarcomeric I-band that recruits various signaling factors and processing enzymes. It has also been proposed to play a role in force production through its Ca2+-regulated association with actin. However, the molecular basis by which N2A performs these functions selectively within the repetitive and extensive titin chain remains poorly understood. Here, we analyze the structure of N2A components and their association with F-actin. Specifically, we characterized the structure of its Ig domains by elucidating the atomic structure of the I81-I83 tandem using x-ray crystallography and computing a homology model for I80. Structural data revealed these domains to present heterogeneous and divergent Ig folds, where I81 and I83 have unique loop structures. Notably, the I81-I83 tandem has a distinct rotational chain arrangement that confers it a unique multi-domain topography. However, we could not identify specific Ca2+-binding sites in these Ig domains, nor evidence of the association of titin N2A components with F-actin in transfected C2C12 myoblasts or C2C12-derived myotubes. In addition, F-actin cosedimentation assays failed to reveal binding to N2A. We conclude that N2A has a unique architecture that predictably supports its selective recruitment of binding partners in signaling, but that its mechanical role through interaction with F-actin awaits validation.


Subject(s)
Actins , Sarcomeres , Actin Cytoskeleton/metabolism , Actins/genetics , Actins/metabolism , Binding Sites , Connectin/genetics , Connectin/metabolism , Sarcomeres/metabolism
11.
J Mol Biol ; 433(9): 166901, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33647290

ABSTRACT

Striated muscle responds to mechanical overload by rapidly up-regulating the expression of the cardiac ankyrin repeat protein, CARP, which then targets the sarcomere by binding to titin N2A in the I-band region. To date, the role of this interaction in the stress response of muscle remains poorly understood. Here, we characterise the molecular structure of the CARP-receptor site in titin (UN2A) and its binding of CARP. We find that titin UN2A contains a central three-helix bundle fold (ca 45 residues in length) that is joined to N- and C-terminal flanking immunoglobulin domains by long, flexible linkers with partial helical content. CARP binds titin by engaging an α-hairpin in the three-helix fold of UN2A, the C-terminal linker sequence, and the BC loop in Ig81, which jointly form a broad binding interface. Mutagenesis showed that the CARP/N2A association withstands sequence variations in titin N2A and we use this information to evaluate 85 human single nucleotide variants. In addition, actin co-sedimentation, co-transfection in C2C12 cells, proteomics on heart lysates, and the mechanical response of CARP-soaked myofibrils imply that CARP induces the cross-linking of titin and actin myofilaments, thereby increasing myofibril stiffness. We conclude that CARP acts as a regulator of force output in the sarcomere that preserves muscle mechanical performance upon overload stress.


Subject(s)
Actins/chemistry , Actins/metabolism , Connectin/chemistry , Connectin/metabolism , Muscle Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Male , Mice , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutation , Myofibrils/chemistry , Myofibrils/metabolism , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Pliability , Protein Binding , Rabbits , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sarcomeres/chemistry , Sarcomeres/metabolism
12.
Int J Mol Sci ; 20(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484291

ABSTRACT

The development of cell culture systems for the naturalistic propagation, self-renewal and differentiation of cells ex vivo is a high goal of molecular engineering. Despite significant success in recent years, the high cost of up-scaling cultures, the need for xeno-free culture conditions, and the degree of mimicry of the natural extracellular matrix attainable in vitro using designer substrates continue to pose obstacles to the translation of cell-based technologies. In this regard, the ZT biopolymer is a protein-based, stable, scalable, and economical cell substrate of high promise. ZT is based on the naturally occurring assembly of two human proteins: titin-Z1Z2 and telethonin. These protein building blocks are robust scaffolds that can be conveniently functionalized with full-length proteins and bioactive peptidic motifs by genetic manipulation, prior to self-assembly. The polymer is, thereby, fully encodable. Functionalized versions of the ZT polymer have been shown to successfully sustain the long-term culturing of human embryonic stem cells (hESCs), human induced pluripotent stem cells (hiPSCs), and murine mesenchymal stromal cells (mMSCs). Pluripotency of hESCs and hiPSCs was retained for the longest period assayed (4 months). Results point to the large potential of the ZT system for the creation of a modular, pluri-functional biomaterial for cell-based applications.


Subject(s)
Biopolymers/metabolism , Animals , Cell Culture Techniques/methods , Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Humans , Induced Pluripotent Stem Cells , Mice , Pluripotent Stem Cells/metabolism
13.
Adv Mater ; 31(17): e1807521, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30866118

ABSTRACT

The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self-renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large-scale cell production under xeno-free culture conditions using current matrices. Here, a bioactive, recombinant, protein-based polymer, termed ZTFn , is presented that closely mimics human plasma fibronectin and serves as an economical, xeno-free, biodegradable, and functionally adaptable cell substrate. The ZTFn substrate supports with high performance the propagation and long-term self-renewal of human embryonic stem cells while preserving their pluripotency. The ZTFn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications.


Subject(s)
Cell Self Renewal/drug effects , Embryonic Stem Cells/metabolism , Extracellular Matrix/chemistry , Fibronectins/chemistry , Multiprotein Complexes/chemistry , Amino Acid Sequence , Biomimetic Materials/chemistry , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cross-Linking Reagents/chemistry , Humans , Polymers/chemistry , Protein Conformation
14.
Protein J ; 38(2): 181-189, 2019 04.
Article in English | MEDLINE | ID: mdl-30719619

ABSTRACT

The purification of phosphorylated proteins in a folded state and in large enough quantity for biochemical or biophysical analysis remains a challenging task. Here, we develop a new implementation of the method of gallium immobilized metal chromatography (Ga3+-IMAC) as to permit the selective enrichment of phosphoproteins in the milligram scale and under native conditions using automated FPLC instrumentation. We apply this method to the purification of the UN2A and M1M2 components of the muscle protein titin upon being monophosphorylated in vitro by cAMP-dependent protein kinase (PKA). We found that UN2A is phosphorylated by PKA at its C-terminus in residue S9578 and M1M2 is phosphorylated in its interdomain linker sequence at position T32607. We demonstrate that the Ga3+-IMAC method is efficient, economical and suitable for implementation in automated purification pipelines for recombinant proteins. The procedure can be applied both to the selective enrichment and to the removal of phosphoproteins from biochemical samples.


Subject(s)
Chromatography, Affinity/methods , Connectin/biosynthesis , Connectin/isolation & purification , Phosphoproteins/biosynthesis , Phosphoproteins/isolation & purification , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry , Escherichia coli/genetics , Gallium/chemistry , Phosphorylation , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification
15.
J Mol Biol ; 430(24): 5066-5079, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30367843

ABSTRACT

Tryptophan synthase (TrpS) is a heterotetrameric αßßα enzyme that exhibits complex substrate channeling and allosteric mechanisms and is a model system in enzymology. In this work, we characterize proposed early and late evolutionary states of TrpS and show that they have distinct quaternary structures caused by insertions-deletions of sequence segments (indels) in the ß-subunit. Remarkably, indole hydrophobic channels that connect α and ß active sites have re-emerged in both TrpS types, yet they follow different paths through the ß-subunit fold. Also, both TrpS geometries activate the α-subunit through the rearrangement of loops flanking the active site. Our results link evolutionary sequence changes in the enzyme subunits with channeling and allostery in the TrpS enzymes. The findings demonstrate that indels allow protein quaternary architectures to escape "minima" in the evolutionary landscape, thereby overcoming the conservational constraints imposed by existing functional interfaces and being free to morph into new mechanistic enzymes.


Subject(s)
Indoles/metabolism , Sulfolobus solfataricus/enzymology , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism , Allosteric Regulation , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , INDEL Mutation , Models, Molecular , Protein Structure, Quaternary , Protein Structure, Secondary , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/genetics , Tryptophan Synthase/genetics
16.
J Mol Biol ; 430(6): 793-805, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29408381

ABSTRACT

Titin-like kinases are muscle-specific kinases that regulate mechanical sensing in the sarcomere. Twitchin kinase (TwcK) is the best-characterized member of this family, both structurally and enzymatically. TwcK activity is auto-inhibited by a dual intrasteric mechanism, in which N- and C-terminal tail extensions wrap around the kinase domain, blocking the hinge region, the ATP binding pocket and the peptide substrate binding groove. Physiologically, kinase activation is thought to occur by a stretch-induced displacement of the inhibitory tails from the kinase domain. Here, we now show that TwcK inhibits its catalysis even in the absence of regulatory tails, by undergoing auto-phosphorylation at mechanistically important elements of the kinase fold. Using mass spectrometry, site-directed mutagenesis and catalytic assays on recombinant samples, we identify residues T212, T301, T316 and T401 as primary auto-phosphorylation sites in TwcK in vitro. Taken together, our results suggest that residue T316, located in the peptide substrate binding P+1 loop, is the dominantly regulatory site in TwcK. Based on these findings, we conclude that TwcK is regulated through a triple-inhibitory mechanism consisting of phosphorylation and intrasteric blockage, which is responsive not only to mechanical cues but also to biochemical modulation. This implies that mechanically stretched conformations of TwcK do not necessarily correspond to catalytically active states, as previously postulated. This further suggests a phosphorylation-dependent desensitization of the TwcK-mediated mechanoresponse of the sarcomere in vivo.


Subject(s)
Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/metabolism , Calmodulin-Binding Proteins/antagonists & inhibitors , Calmodulin-Binding Proteins/metabolism , Muscle Proteins/antagonists & inhibitors , Muscle Proteins/metabolism , Amino Acid Sequence , Caenorhabditis elegans Proteins/genetics , Calmodulin-Binding Proteins/genetics , Carrier Proteins , Catalysis , Crystallography, X-Ray , Models, Molecular , Muscle Proteins/genetics , Mutagenesis, Site-Directed , Phosphorylation , Protein Conformation , Protein Domains , Protein Isoforms , Recombinant Proteins
17.
PLoS Negl Trop Dis ; 10(9): e0004977, 2016 09.
Article in English | MEDLINE | ID: mdl-27606593

ABSTRACT

Trypanosoma vivax is one of the causative agents of Animal African Trypanosomosis in cattle, which is endemic in sub-Saharan Africa and transmitted primarily by the bite of the tsetse fly vector. The parasite can also be mechanically transmitted, and this has allowed its spread to South America. Diagnostics are limited for this parasite and in farm settings diagnosis is mainly symptom-based. We set out to identify, using a proteomic approach, candidate diagnostic antigens to develop into an easy to use pen-side lateral flow test device. Two related members the invariant surface glycoprotein family, TvY486_0045500 and TvY486_0019690, were selected. Segments of these antigens, lacking N-terminal signal peptides and C-terminal transmembrane domains, were expressed in E. coli. Both were developed into ELISA tests and one of them, TvY486_0045500, was developed into a lateral flow test prototype. The tests were all evaluated blind with 113 randomised serum samples, taken from 37 calves before and after infection with T. vivax or T. congolense. The TvY486_0045500 and TvY486_0019690 ELISA tests gave identical sensitivity and specificity values for T. vivax infection of 94.5% (95% CI, 86.5% to 98.5%) and 88.0% (95% CI, 75.7% to 95.5%), respectively, and the TvY486_0045500 lateral flow test prototype a sensitivity and specificity of 92.0% (95% CI, 83.4% to 97.0%) and 89.8% (95% CI, 77.8% to 96.6%), respectively. These data suggest that recombinant TvY486_0045500 shows promise for the development of a pen-side lateral flow test for the diagnosis of T. vivax animal African trypanosomosis.


Subject(s)
Antigens, Protozoan/immunology , Cattle Diseases/diagnosis , Cattle/parasitology , Immunologic Tests/methods , Trypanosoma vivax/immunology , Trypanosomiasis, African/veterinary , Animals , Antibodies, Protozoan/blood , Cattle Diseases/parasitology , Enzyme-Linked Immunosorbent Assay/veterinary , Proteomics , Sensitivity and Specificity , Trypanosoma congolense/immunology , Trypanosomiasis, African/diagnosis
18.
Open Biol ; 6(9)2016 Sep.
Article in English | MEDLINE | ID: mdl-27683155

ABSTRACT

Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin's I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected.

19.
FEBS Lett ; 590(18): 3098-110, 2016 09.
Article in English | MEDLINE | ID: mdl-27531639

ABSTRACT

The cardiac ankyrin repeat protein (CARP) is up-regulated in the myocardium during cardiovascular disease and in response to mechanical or toxic stress. Stress-induced CARP interacts with the N2A spring region of the titin filament to modulate muscle compliance. We characterize the interaction between CARP and titin-N2A and show that the binding site in titin spans the dual domain UN2A-Ig81. We find that the unique sequence UN2A is not structurally disordered, but that it has a stable, elongated α-helical fold that possibly acts as a constant force spring. Our findings portray CARP/titin-N2A as a structured node and help to rationalize the molecular basis of CARP mechanosensing in the sarcomeric I-band.


Subject(s)
Connectin/metabolism , Muscle Proteins/chemistry , Nuclear Proteins/chemistry , Repressor Proteins/chemistry , Binding Sites , Connectin/chemistry , Humans , Muscle Proteins/metabolism , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Repressor Proteins/metabolism
20.
PLoS Negl Trop Dis ; 8(6): e2936, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24922510

ABSTRACT

Animal African Trypanosomosis (AAT) presents a severe problem for agricultural development in sub-Saharan Africa. It is caused by several trypanosome species and current means of diagnosis are expensive and impractical for field use. Our aim was to discover antigens for the detection of antibodies to Trypanosoma congolense, one of the main causative agents of AAT. We took a proteomic approach to identify potential immunodiagnostic parasite protein antigens. One hundred and thirteen proteins were identified which were selectively recognized by infected cattle sera. These were assessed for likelihood of recombinant protein expression in E. coli and fifteen were successfully expressed and assessed for their immunodiagnostic potential by ELISA using pooled pre- and post-infection cattle sera. Three proteins, members of the invariant surface glycoprotein (ISG) family, performed favorably and were then assessed using individual cattle sera. One antigen, Tc38630, evaluated blind with 77 randomized cattle sera in an ELISA assay gave sensitivity and specificity performances of 87.2% and 97.4%, respectively. Cattle immunoreactivity to this antigen diminished significantly following drug-cure, a feature helpful for monitoring the efficacy of drug treatment.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/analysis , Proteomics/methods , Trypanosoma congolense/isolation & purification , Africa South of the Sahara , Animals , Cattle , Cattle Diseases/diagnosis , Cloning, Molecular , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Gene Expression , Mice, Inbred BALB C , Random Allocation , Sensitivity and Specificity , Trypanosoma congolense/immunology , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...