Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Biomater Sci ; 11(6): 2186-2199, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36744734

ABSTRACT

Extracellular matrix (ECM) rigidity has been shown to increase the invasive properties of breast cancer cells, promoting transformation and metastasis through mechanotransduction. Reducing ECM stiffness via enzymatic digestion could be a promising approach to slowing breast cancer development by de-differentiation of breast cancer cells to less aggressive phenotypes and enhancing the effectiveness of existing chemotherapeutics via improved drug penetrance throughout the tumor. In this study, we examine the effects of injectable liberase (a blend of collagenase and thermolysin enzymes) treatments on the linear and nonlinear rheology of allograft 4T1 mouse mammary tumors. We perform two sets of in vivo mouse studies, in which either one or multiple treatment injections occur before the tumors are harvested for rheological analysis. The treatment groups in each study consist of a buffer control, free liberase enzyme in buffer, a thermoresponsive copolymer called LiquoGel (LQG) in buffer, and a combined, localized injection of LQG and liberase. All tumor samples exhibit gel-like linear rheological behavior with the elastic modulus significantly larger than the viscous modulus and both independent of frequency. Tumors that receive a single injection of localized liberase have significantly lower tumor volumes and lower tissue moduli at both the center and edge compared to buffer- and free liberase-injected control tumors, while tissue viscoelasticity remains relatively unaffected. Tumors injected multiple times with LQG and liberase also have lower tissue volumes but possess higher tissue moduli and lower viscoelasticities compared to the other treatment groups. We propose that a mechanotransductive mechanism could cause the formation of smaller but stiffer tumors after repeated, localized liberase injections. Large amplitude oscillatory shear (LAOS) experiments are also performed on tissues from the multiple injection study and the results are analyzed using MITlaos. LAOS analysis reveals that all 4T1 tumors from the multiple injection study exhibit nonlinear rheological behavior at high strains and strain rates. Examination of the Lissajous-Bowditch curves, Chebyshev coefficient ratios, elastic moduli, and dynamic viscosities demonstrate that the onset and type of nonlinear behavior is independent of treatment type and elastic modulus, suggesting that multiple liberase injections do not affect the nonlinear viscoelasticity of 4T1 tumors.


Subject(s)
Mechanotransduction, Cellular , Neoplasms , Mice , Animals , Thermolysin/metabolism , Collagenases/metabolism , Rheology
2.
Cancer Epidemiol Biomarkers Prev ; 31(10): 1944-1951, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35973227

ABSTRACT

BACKGROUND: Obese women have higher risk of aggressive breast tumors and distant metastasis. However, obesity has rarely been assessed in association with metastasis in diverse populations. METHODS: In the Carolina Breast Cancer Study Phase 3 (2008-2013), waist-to-hip ratio (WHR), body mass index (BMI), and molecular subtype [PAM50 risk-of-recurrence (ROR) score] were assessed. Obesity measures were evaluated in association with metastasis within five years of diagnosis, overall and stratified by race and ROR score. Absolute risk of metastasis and risk differences between strata were calculated using the Kaplan-Meier estimator, adjusted for age, grade, stage, race, and ER status. Relative frequency of metastatic site and multiplicity were estimated in association with obesity using generalized linear models. RESULTS: High-WHR was associated with higher risk of metastasis (5-year risk difference, RD, 4.3%; 95% confidence interval, 2.2-6.5). It was also associated with multiple metastases and metastases at all sites except brain. The 5-year risk of metastasis differed by race (11.2% and 6.9% in Black and non-Black, respectively) and ROR score (19.5% vs. 6.6% in high vs. low-to-intermediate ROR-PT). Non-Black women and those with low-to-intermediate ROR scores had similar risk in high- and low-WHR strata. However, among Black women and those with high ROR, risk of metastasis was elevated among high-WHR (RDBlack/non-Black = 4.6%, RDHigh/Low-Int = 3.1%). Patterns of metastasis were similar by BMI. CONCLUSIONS: WHR is associated with metastatic risk, particularly among Black women and those with high-risk tumors. IMPACT: Understanding how risk factors for metastasis interact may help in tailoring care plans and surveillance among patients with breast cancer.


Subject(s)
Breast Neoplasms , Neoplasms, Second Primary , Body Mass Index , Breast Neoplasms/pathology , Clinical Trials, Phase III as Topic , Female , Genomics , Humans , Obesity/complications , Prognosis , Risk Factors
3.
Breast Cancer Res Treat ; 192(2): 447-455, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35034243

ABSTRACT

PURPOSE: Black women have a 40% increased risk of breast cancer-related mortality. These outcome disparities may reflect differences in tumor pathways and a lack of targetable therapies for specific subtypes that are more common in Black women. Hepatocyte growth factor (HGF) is a targetable pathway that promotes breast cancer tumorigenesis, is associated with basal-like breast cancer, and is differentially expressed by race. This study assessed whether a 38-gene HGF expression signature is associated with recurrence and survival in Black and non-Black women. METHODS: Study participants included 1957 invasive breast cancer cases from the Carolina Breast Cancer Study. The HGF signature was evaluated in association with recurrence (n = 1251, 171 recurrences), overall, and breast cancer-specific mortality (n = 706, 190/328 breast cancer/overall deaths) using Cox proportional hazard models. RESULTS: Women with HGF-positive tumors had higher recurrence rates [HR 1.88, 95% CI (1.19, 2.98)], breast cancer-specific mortality [HR 1.90, 95% CI (1.26, 2.85)], and overall mortality [HR 1.69; 95% CI (1.17, 2.43)]. Among Black women, HGF positivity was significantly associated with higher 5-year rate of recurrence [HR 1.73; 95% CI (1.01, 2.99)], but this association was not significant in non-Black women [HR 1.68; 95% CI (0.72, 3.90)]. Among Black women, HGF-positive tumors had elevated breast cancer-specific mortality [HR 1.80, 95% CI (1.05, 3.09)], which was not significant in non-Black women [HR 1.52; 95% CI (0.78, 2.99)]. CONCLUSION: This multi-gene HGF signature is a poor-prognosis feature for breast cancer and may identify patients who could benefit from HGF-targeted treatments, an unmet need for Black and triple-negative patients.


Subject(s)
Breast Neoplasms , Hepatocyte Growth Factor , Black People , Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Hepatocyte Growth Factor/biosynthesis , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Proportional Hazards Models , Race Factors , White People
4.
Breast Cancer Res ; 23(1): 80, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344422

ABSTRACT

BACKGROUND: African American women have the highest risk of breast cancer mortality compared to other racial groups. Differences in tumor characteristics have been implicated as a possible cause; however, the tumor microenvironment may also contribute to this disparity in mortality. Hepatocyte growth factor (HGF) is a stroma-derived marker of the tumor microenvironment that may affect tumor progression differentially by race. OBJECTIVE: To examine whether an HGF gene expression signature is differentially expressed by race and tumor characteristics. METHODS: Invasive breast tumors from 1957 patients were assessed for a 38-gene RNA-based HGF gene expression signature. Participants were black (n = 1033) and non-black (n = 924) women from the population-based Carolina Breast Cancer Study (1993-2013). Generalized linear models were used to estimate the relative frequency differences (RFD) in HGF status by race, clinical, and demographic factors. RESULTS: Thirty-two percent of tumors were positive for the HGF signature. Black women were more likely [42% vs. 21%; RFD = + 19.93% (95% CI 16.00, 23.87)] to have HGF-positive tumors compared to non-black women. Triple-negative patients had a higher frequency of HGF positivity [82% vs. 13% in non-triple-negative; RFD = + 65.85% (95% CI 61.71, 69.98)], and HGF positivity was a defining feature of basal-like subtype [92% vs. 8% in non-basal; RFD = + 81.84% (95% CI 78.84, 84.83)]. HGF positivity was associated with younger age, stage, higher grade, and high genomic risk of recurrence (ROR-PT) score. CONCLUSION: HGF expression is a defining feature of basal-like tumors, and its association with black race and young women suggests it may be a candidate pathway for understanding breast cancer disparities.


Subject(s)
Breast Neoplasms/genetics , Hepatocyte Growth Factor/genetics , Signal Transduction/genetics , Adult , Breast Neoplasms/epidemiology , Breast Neoplasms/ethnology , Breast Neoplasms/pathology , Female , Health Status Disparities , Humans , Middle Aged , North Carolina/epidemiology , Prevalence , Racial Groups
5.
Data Brief ; 26: 104464, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667234

ABSTRACT

This data article is related to the research article entitled "Silver nanoparticles alter epithelial basement membrane integrity, cell adhesion molecule expression and TGF-beta secretion", available in the journal Nanomedicine: Nanotechnology, Biology, and Medicine [1]. This Data in Brief consists of data that describe changes in the expression of basement membrane (BM)-associated genes and proteins in three non-transformed epithelial cell lines following acute (6 h) and chronic (24 h plus 7-day chase) exposure to silver nanoparticles (AgNPs). Human BEAS2B (lung), MCF10AI (breast), and CCD-18Co (colon) cultured epithelia were analyzed for protein expression by LC-MS/MS and for gene expression by pathway-focused QRT-PCR arrays of 168 focal adhesion, integrin, and extracellular matrix (ECM) genes known to be localized to the plasma membrane, the BM/ECM, or secreted into the extracellular space. Ingenuity pathway analysis (IPA) of combined gene and protein expression datasets was then used to predict canonical pathways affected by AgNP exposure.

6.
Breast Cancer Res ; 21(1): 105, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511085

ABSTRACT

BACKGROUND: In the USA, the breast cancer mortality rate is 41% higher for African-American women than non-Hispanic White women. While numerous gene expression studies have classified biological features that vary by race and may contribute to poorer outcomes, few studies have experimentally tested these associations. CRYßB2 gene expression has drawn particular interest because of its association with overall survival and African-American ethnicity in multiple cancers. Several reports indicate that overexpression of the CRYßB2 pseudogene, CRYßB2P1, and not CRYßB2 is linked with race and poor outcome. It remains unclear whether either or both genes are linked to breast cancer outcomes. This study investigates CRYßB2 and CRYßB2P1 expression in human breast cancers and breast cancer cell line models, with the goal of elucidating the mechanistic contribution of CRYßB2 and CRYßB2P1 to racial disparities. METHODS: Custom scripts for CRYßB2 or CRYßB2P1 were generated and used to identify reads that uniquely aligned to either gene. Gene expression according to race and tumor subtype were assessed using all available TCGA breast cancer RNA sequencing alignment samples (n = 1221). In addition, triple-negative breast cancer models engineered to have each gene overexpressed or knocked out were developed and evaluated by in vitro, biochemical, and in vivo assays to identify biological functions. RESULTS: We provide evidence that CRYßB2P1 is expressed at higher levels in breast tumors compared to CRYßB2, but only CRYßB2P1 is significantly increased in African-American tumors relative to White American tumors. We show that independent of CRYßB2, CRYßB2P1 enhances tumorigenesis in vivo via promoting cell proliferation. Our data also reveal that CRYßB2P1 may function as a non-coding RNA to regulate CRYßB2 expression. A key observation is that the combined overexpression of both genes was found to suppress cell growth. CRYßB2 overexpression in triple-negative breast cancers increases invasive cellular behaviors, tumor growth, IL6 production, immune cell chemoattraction, and the expression of metastasis-associated genes. These data underscore that both CRYßB2 and CRYßB2P1 promote tumor growth, but their mechanisms for tumor promotion are likely distinct. CONCLUSIONS: Our findings provide novel data emphasizing the need to distinguish and study the biological effects of both CRYßB2 and CRYßB2P1 as both genes independently promote tumor progression. Our data demonstrate novel molecular mechanisms of two understudied, disparity-linked molecules.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Pseudogenes/physiology , beta-Crystallin B Chain/physiology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/physiology , Breast Neoplasms/ethnology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Ethnicity/genetics , Female , Gene Expression , Genetic Association Studies , Humans , Interleukin-6/metabolism , Mammary Neoplasms, Experimental , Mice , Mice, Nude , Pseudogenes/genetics , Triple Negative Breast Neoplasms/ethnology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , beta-Crystallin B Chain/genetics , beta-Crystallin B Chain/metabolism
7.
Nanomedicine ; 21: 102070, 2019 10.
Article in English | MEDLINE | ID: mdl-31351238

ABSTRACT

Silver nanoparticles (AgNPs) are widely used in consumer and pharmaceutical products due to their antipathogenic properties. However, safety concerns have been raised due to their bioactive properties. While reports have demonstrated AgNPs can embed within the extracellular matrix, their effects on basement membrane (BM) production, integrin engagement, and tissue-integrity are not well-defined. This study analyzed the effects of AgNPs on BM production, composition and integrin/focal adhesion interactions in representative lung, esophageal, breast and colorectal epithelia models. A multidisciplinary approach including focused proteomics, QPCR arrays, pathway analyses, and immune-based, structural and functional assays was used to identify molecular and physiological changes in cell adhesions and the BM induced by acute and chronic AgNP exposure. Dysregulated targets included CD44 and transforming growth factor-beta, two proteins frequently altered during pathogenesis. Results indicate AgNP exposure interferes with BM and cell adhesion dynamics, and provide insight into the mechanisms of AgNP-induced disruption of epithelial physiology.


Subject(s)
Basement Membrane/metabolism , Cell Adhesion Molecules/biosynthesis , Gene Expression Regulation/drug effects , Metal Nanoparticles/chemistry , Silver , Transforming Growth Factor beta1/biosynthesis , Cell Line, Tumor , Humans , Silver/chemistry , Silver/pharmacology
8.
ACS Chem Biol ; 13(10): 2825-2840, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30183254

ABSTRACT

The extracellular matrix (ECM) contributes to tumor progression through changes induced by tumor and stromal cell signals that promote increased ECM density and stiffness. The increase in ECM stiffness is known to promote tumor cell invasion into surrounding tissues and metastasis. In addition, this scar-like ECM creates a protective barrier around the tumor that reduces the effectiveness of innate and synthetic antitumor agents. Herein, clinically approved breast cancer therapies as well as novel experimental approaches that target the ECM are discussed, including in situ hydrogel drug delivery systems, an emerging technology the delivers toxic chemotherapeutics, gene-silencing microRNAs, and tumor suppressing immune cells directly inside the tumor. Intratumor delivery of therapeutic agents has the potential to drastically reduce systemic side effects experienced by the patient and increase the efficacy of these agents. This review also describes the opposing effects of ECM degradation on tumor progression, where some studies report improved drug delivery and delayed cancer progression and others report enhanced metastasis and decreased patient survival. Given the recent increase in ECM-targeting drugs entering preclinical and clinical trials, understanding and addressing the factors that impact the effect of the ECM on tumor progression is imperative for the sake of patient safety and survival outcome.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Drug Delivery Systems , Extracellular Matrix/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Humans
9.
Breast Cancer Res ; 19(1): 131, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29228969

ABSTRACT

BACKGROUND: We examined racial differences in the expression of eight genes and their associations with risk of recurrence among 478 white and 495 black women who participated in the Carolina Breast Cancer Study Phase 3. METHODS: Breast tumor samples were analyzed for PAM50 subtype and for eight genes previously found to be differentially expressed by race and associated with breast cancer survival: ACOX2, MUC1, FAM177A1, GSTT2, PSPH, PSPHL, SQLE, and TYMS. The expression of these genes according to race was assessed using linear regression and each gene was evaluated in association with recurrence using Cox regression. RESULTS: Compared to white women, black women had lower expression of MUC1, a suspected good prognosis gene, and higher expression of GSTT2, PSPHL, SQLE, and TYMS, suspected poor prognosis genes, after adjustment for age and PAM50 subtype. High expression (greater than median versus less than or equal to median) of FAM177A1 and PSPH was associated with a 63% increase (hazard ratio (HR) = 1.63, 95% confidence interval (CI) = 1.09-2.46) and 76% increase (HR = 1.76, 95% CI = 1.15-2.68), respectively, in risk of recurrence after adjustment for age, race, PAM50 subtype, and ROR-PT score. Log2-transformed SQLE expression was associated with a 20% increase (HR = 1.20, 95% CI = 1.03-1.41) in recurrence risk after adjustment. A continuous multi-gene score comprised of eight genes was also associated with increased risk of recurrence among all women (HR = 1.11, 95% CI = 1.04-1.19) and among white (HR = 1.14, 95% CI = 1.03-1.27) and black (HR = 1.11, 95% CI = 1.02-1.20) women. CONCLUSIONS: Racial differences in gene expression may contribute to the survival disparity observed between black and white women diagnosed with breast cancer.


Subject(s)
Breast Neoplasms/ethnology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Population Groups/genetics , Black or African American/genetics , Biomarkers, Tumor , Breast Neoplasms/epidemiology , Breast Neoplasms/mortality , Female , Gene Expression Profiling , Humans , North Carolina/epidemiology , Population Surveillance , Prognosis , Proportional Hazards Models , White People/genetics
10.
Cancer Lett ; 411: 136-149, 2017 12 28.
Article in English | MEDLINE | ID: mdl-28965853

ABSTRACT

Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.


Subject(s)
Heterocyclic Compounds, 2-Ring/pharmacology , Inflammatory Breast Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Thiazoles/pharmacology , Zinc Finger Protein GLI1/biosynthesis , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Inflammatory Breast Neoplasms/metabolism , Inflammatory Breast Neoplasms/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Signal Transduction , Xenograft Model Antitumor Assays
11.
Sci Rep ; 7: 40196, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071703

ABSTRACT

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo. We found that mECMs isolated from adult mice and rats were sufficient to redirect testicular derived cells to produce normal mammary epithelial trees within epithelial divested mouse mammary fat-pads. Conversely, ECMs isolated from omental fat and lung did not redirect testicular cells to a MEC fate, indicating the necessity of tissue specific components of the mECM. mECM preparations also completely inhibited teratoma formation from ESC inoculations. Further, a phenotypically normal ductal outgrowth resulted from a single inoculation of ESCs and mECM. To the best of our knowledge, this is the first demonstration of a tissue specific ECM driving differentiation of cells to form a functional tissue in vivo.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/physiology , Extracellular Matrix/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Animals , Mice , Rats
12.
Mol Cancer Res ; 15(2): 165-178, 2017 02.
Article in English | MEDLINE | ID: mdl-27856957

ABSTRACT

Lipolysis-stimulated lipoprotein receptor (LSR) has been found in the plasma membrane and is believed to function in lipoprotein endocytosis and tight junctions. Given the impact of cellular metabolism and junction signaling pathways on tumor phenotypes and patient outcome, it is important to understand how LSR cellular localization mediates its functions. We conducted localization studies, evaluated DNA binding, and examined the effects of nuclear LSR in cells, xenografts, and clinical specimens. We found LSR within the membrane, cytoplasm, and the nucleus of breast cancer cells representing multiple intrinsic subtypes. Chromatin immunoprecipitation (ChIP) showed direct binding of LSR to DNA, and sequence analysis identified putative functional motifs and post-translational modifications of the LSR protein. While neither overexpression of transcript variants, nor pharmacologic manipulation of post-translational modification significantly altered localization, inhibition of nuclear export enhanced nuclear localization, suggesting a mechanism for nuclear retention. Coimmunoprecipitation and proximal ligation assays indicated LSR-pericentrin interactions, presenting potential mechanisms for nuclear-localized LSR. The clinical significance of LSR was evaluated using data from over 1,100 primary breast tumors, which showed high LSR levels in basal-like tumors and tumors from African-Americans. In tumors histosections, nuclear localization was significantly associated with poor outcomes. Finally, in vivo xenograft studies revealed that basal-like breast cancer cells that overexpress LSR exhibited both membrane and nuclear localization, and developed tumors with 100% penetrance, while control cells lacking LSR developed no tumors. These results show that nuclear LSR alters gene expression and may promote aggressive cancer phenotypes. IMPLICATIONS: LSR functions in the promotion of aggressive breast cancer phenotypes and poor patient outcome via differential subcellular localization to alter cell signaling, bioenergetics, and gene expression. Mol Cancer Res; 15(2); 165-78. ©2016 AACR.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/metabolism , Receptors, LDL/metabolism , Animals , Breast Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Female , Heterografts , Humans , Mice , Receptors, LDL/biosynthesis , Receptors, LDL/genetics
13.
Endocr Relat Cancer ; 22(2): R69-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25624167

ABSTRACT

Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.


Subject(s)
Breast Neoplasms/metabolism , Environmental Pollutants/toxicity , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Diet , Environmental Exposure , Female , Humans
14.
Toxins (Basel) ; 6(9): 2626-56, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25198129

ABSTRACT

Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.


Subject(s)
Bacillus/pathogenicity , Bacterial Proteins , Bacterial Toxins , Clostridium/pathogenicity , Animals , Bacillus/metabolism , Bacterial Infections , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Clostridium/metabolism , Gastrointestinal Diseases , Humans , Protein Conformation
15.
Mol Cancer ; 13: 163, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24990559

ABSTRACT

BACKGROUND: Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. METHODS: In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. RESULTS: Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. CONCLUSIONS: Collectively, these data are the first to show that iota toxin has the potential to be an effective, targeted therapy for breast cancer.


Subject(s)
ADP Ribose Transferases/administration & dosage , Bacterial Toxins/administration & dosage , Breast Neoplasms/genetics , Lipoproteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Clostridium/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Lipolysis/drug effects , Lipoproteins/genetics , MCF-7 Cells , Receptors, Lipoprotein
16.
PLoS One ; 9(3): e91747, 2014.
Article in English | MEDLINE | ID: mdl-24637461

ABSTRACT

The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR) in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.


Subject(s)
Breast Neoplasms/metabolism , Receptors, Lipoprotein/metabolism , Biopsy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Claudins/genetics , Claudins/metabolism , Female , Gene Expression , Humans , Immunohistochemistry , Lipolysis , Receptors, Lipoprotein/genetics , Risk Factors , Tight Junctions/genetics , Tight Junctions/metabolism
17.
Breast Cancer Res ; 15(5): R82, 2013.
Article in English | MEDLINE | ID: mdl-24025166

ABSTRACT

INTRODUCTION: Basal-like and luminal breast cancers have distinct stromal-epithelial interactions, which play a role in progression to invasive cancer. However, little is known about how stromal-epithelial interactions evolve in benign and pre-invasive lesions. METHODS: To study epithelial-stromal interactions in basal-like breast cancer progression, we cocultured reduction mammoplasty fibroblasts with the isogenic MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and ductal carcinoma in situ). We used gene expression microarrays to identify pathways induced by coculture in premalignant cells (MCF10DCIS) compared with normal and benign cells (MCF10A and MCF10AT1). Relevant pathways were then evaluated in vivo for associations with basal-like subtype and were targeted in vitro to evaluate effects on morphogenesis. RESULTS: Our results show that premalignant MCF10DCIS cells express characteristic gene expression patterns of invasive basal-like microenvironments. Furthermore, while hepatocyte growth factor (HGF) secretion is upregulated (relative to normal, MCF10A levels) when fibroblasts are cocultured with either atypical (MCF10AT1) or premalignant (MCF10DCIS) cells, only MCF10DCIS cells upregulated the HGF receptor MET. In three-dimensional cultures, upregulation of HGF/MET in MCF10DCIS cells induced morphological changes suggestive of invasive potential, and these changes were reversed by antibody-based blocking of HGF signaling. These results are relevant to in vivo progression because high expression of a novel MCF10DCIS-derived HGF signature was correlated with the basallike subtype, with approximately 86% of basal-like cancers highly expressing the HGF signature, and because high expression of HGF signature was associated with poor survival. CONCLUSIONS: Coordinated and complementary changes in HGF/MET expression occur in epithelium and stroma during progression of pre-invasive basal-like lesions. These results suggest that targeting stroma-derived HGF signaling in early carcinogenesis may block progression of basal-like precursor lesions.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Hepatocyte Growth Factor/metabolism , Stromal Cells/metabolism , Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Cell Communication , Cell Line, Tumor , Cluster Analysis , Coculture Techniques , Cytokines/biosynthesis , Cytokines/metabolism , Female , Fibroblasts/metabolism , Gene Expression Profiling , Hepatocyte Growth Factor/antagonists & inhibitors , Hepatocyte Growth Factor/genetics , Humans , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction , Spheroids, Cellular , Tumor Cells, Cultured , Tumor Microenvironment/genetics
18.
BMC Cancer ; 12: 266, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22727333

ABSTRACT

BACKGROUND: Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca(2+) homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin's potential role in normal breast cells and breast cancer. METHODS: The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H(2)O(2) to detect changes in hornerin expression during induction of apoptosis/necrosis. RESULTS: Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. CONCLUSIONS: Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Animals , Breast Neoplasms/pathology , Cell Death/genetics , Cell Line, Tumor , Exosomes/metabolism , Female , Humans , Mammary Glands, Animal/metabolism , Mammary Glands, Human/metabolism , Mice , Neoplasm Staging , Protein Transport , Proteolysis , S100 Proteins/genetics , S100 Proteins/metabolism
19.
Breast Cancer Res ; 14(3): R97, 2012 Jun 25.
Article in English | MEDLINE | ID: mdl-22731827

ABSTRACT

INTRODUCTION: Macrophages comprise an essential component of the mammary microenvironment necessary for normal gland development. However, there is no viable in vivo model to study their role in normal human breast function. We hypothesized that adding primary human macrophages to the murine mammary gland would enhance and provide a novel approach to examine immune-stromal cell interactions during the humanization process. METHODS: Primary human macrophages, in the presence or absence of ectopic estrogen stimulation, were used to humanize mouse mammary glands. Mechanisms of enhanced humanization were identified by cytokine/chemokine ELISAs, zymography, western analysis, invasion and proliferation assays; results were confirmed with immunohistological analysis. RESULTS: The combined treatment of macrophages and estrogen stimulation significantly enhanced the percentage of the total gland humanized and the engraftment/outgrowth success rate. Timecourse analysis revealed the disappearance of the human macrophages by two weeks post-injection, suggesting that the improved overall growth and invasiveness of the fibroblasts provided a larger stromal bed for epithelial cell proliferation and structure formation. Confirming their promotion of fibroblasts humanization, estrogen-stimulated macrophages significantly enhanced fibroblast proliferation and invasion in vitro, as well as significantly increased proliferating cell nuclear antigen (PCNA) positive cells in humanized glands. Cytokine/chemokine ELISAs, zymography and western analyses identified TNFα and MMP9 as potential mechanisms by which estrogen-stimulated macrophages enhanced humanization. Specific inhibitors to TNFα and MMP9 validated the effects of these molecules on fibroblast behavior in vitro, as well as by immunohistochemical analysis of humanized glands for human-specific MMP9 expression. Lastly, glands humanized with macrophages had enhanced engraftment and tumor growth compared to glands humanized with fibroblasts alone. CONCLUSIONS: Herein, we demonstrate intricate immune and stromal cell paracrine interactions in a humanized in vivo model system. We confirmed our in vivo results with in vitro analyses, highlighting the value of this model to interchangeably substantiate in vitro and in vivo results. It is critical to understand the signaling networks that drive paracrine cell interactions, for tumor cells exploit these signaling mechanisms to support their growth and invasive properties. This report presents a dynamic in vivo model to study primary human immune/fibroblast/epithelial interactions and to advance our knowledge of the stromal-derived signals that promote tumorigenesis.


Subject(s)
Fibroblasts/metabolism , Macrophages/metabolism , Mammary Glands, Animal/metabolism , Paracrine Communication , Stromal Cells/metabolism , Animals , Cell Movement , Cell Proliferation , Chemokines/analysis , Cytokines/analysis , Estrogens/metabolism , Estrogens/pharmacology , Female , Humans , Mammary Glands, Animal/cytology , Mammary Glands, Animal/embryology , Mammary Neoplasms, Experimental/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Proliferating Cell Nuclear Antigen/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
20.
PLoS One ; 7(3): e34058, 2012.
Article in English | MEDLINE | ID: mdl-22457812

ABSTRACT

Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR) or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR). Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2) was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.


Subject(s)
Alkaline Phosphatase/metabolism , Bone Morphogenetic Proteins/metabolism , Homeodomain Proteins/metabolism , Mammary Glands, Animal/metabolism , Receptors, Progesterone/physiology , Animals , Base Sequence , Cells, Cultured , DNA Primers , Female , Fluorescent Antibody Technique , Mammary Glands, Animal/cytology , Mice , Polymerase Chain Reaction , Promoter Regions, Genetic , Receptors, Progesterone/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...