Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Geohealth ; 8(10): e2024GH001078, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39355274

ABSTRACT

The Atacama Desert's naturally elevated metal(loid)s pose a unique challenge for assessing the environmental impact of mining, particularly for indigenous communities residing in these areas. This study investigates how copper mining influences the dispersion of these elements in the wind-transportable fraction (<75 µm) of surface sediments across an 80 km radius. We employed a multi-pronged approach, utilizing spatial modeling to map element distributions, exponential decay analysis to quantify concentration decline with distance, regime shift modeling to identify dispersion pattern variations, and pollution assessment to evaluate impact. Our results reveal significant mining-driven increases in surface concentrations of copper (Cu), molybdenum (Mo), and arsenic (As). Notably, within the first 20 km, concentrations peaked at 1,016 mg kg⁻1 for Cu, 31 mg kg⁻1 for Mo, and a remarkable 165 mg kg⁻1 for As. Cu and Mo displayed significant dispersion, extending up to 50 km from the source. However, As exhibited the most extensive reach, traveling up to 70 km downwind, highlighting the far-reaching ecological footprint of mining operations. Mineralogical analyses corroborated these findings, identifying mining-related minerals in surface sediments far beyond the immediate mining area. Although pollution indices based on the proposed Local Geochemical Background reveal significant contamination across the study area, establishing accurate pre-industrial baseline values is essential for a more reliable assessment. This study challenges the concept of "natural pollution" by demonstrating that human activities exacerbate baseline metal(loid)s levels. Expanding monitoring protocols is imperative to comprehensively assess the combined effects of multiple emission sources, including mining and natural processes, in safeguarding environmental and human health for future generations.

2.
Sci Total Environ ; 920: 170954, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38365039

ABSTRACT

Assessing the impact of mining activity on the availability of environmental pollutants is crucial for informing health policies in anticipation of future production scenarios of critical minerals essential for the transition to a net-zero carbon society. However, temporal and spatial monitoring is often sparse, and measurements may not extend far enough back in time. In this study, we utilize variations of chemical elements contained in tree-rings collected in local villages from an area heavily affected by copper mining in the Atacama Desert since the early 20th century to evaluate the temporal distribution of pollutants and their relationship with local drivers. By combining time-varying data on local drivers, such as copper production and the dry tailings deposit area, we show how the surge in copper production during the 1990s, fueled by trade liberalization and increased international demand, led to a significant increment in the availability of metal(loid)s related to mining activities on indigenous lands. Our findings suggest that the environmental legislation in Chile may be underestimating the environmental impact of tailing dams in neighboring populations, affecting the well-being of Indigenous Peoples from the Atacama mining hotspot region. We argue that future changes in production rates driven by international demand could have negative repercussions on the environment and local communities. Therefore, mining emissions and the management of tailing dams should be carefully considered to anticipate their potential negative effects on human and ecosystem health.


Subject(s)
Copper , Environmental Pollutants , Humans , Copper/analysis , Ecosystem , Dust/analysis , Environmental Monitoring , Environment
3.
Environ Int ; 169: 107490, 2022 11.
Article in English | MEDLINE | ID: mdl-36116364

ABSTRACT

Indigenous communities from northern Chile have historically been exposed to the impacts of massive copper industrial activities conducted in the region. Some of the communities belonging to the Alto El Loa Indigenous Development Area are located less than 10 km from the "Talabre'' tailings dam, which contains residues from copper production and other metals that can be toxic to human health (e.g., As, Sb, Cd, Mo, Pb). Given the increasing demand of copper production to achieve net-zero emission scenarios and concomitant expansions of the tailings, the exposure to toxic metals is a latent risk to local communities. Despite the impact that copper production could generate on ancestral communities from northern Chile, studies and monitoring are limited and the results are often not made accessible for local communities. Here, we evaluate such risks by characterizing metal concentrations in dust collected from roofs and windows of houses from the Alto El Loa area. Our results showed that As, Sb, Cd, Cu, Mo, Ag, S, and Pb concentrations in these matrices can be connected to local copper mining activities. Additionally, air transport models indicate that high concentrations of toxic elements (As, Sb, and Cd) can be explained by the atmospheric transport of particles from the tailings in a NE direction up to 50 km away. Pollution indices and Health Risk Assessment suggested a highly contaminated region with a health risk for its inhabitants. Our analysis on a local scale seeks to make visible the case of northern Chile as a critical territory where actions should be taken to mitigate the effects of mining in the face of this new scenario of international demand for the raw materials necessary for the transition to a net-zero carbon global society.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , Carbon/analysis , Chile , Copper/analysis , Dust/analysis , Environmental Monitoring/methods , Humans , Lead/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis
4.
Nat Commun ; 6: 8435, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26419204

ABSTRACT

Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

5.
J Environ Monit ; 8(5): 530-6, 2006 May.
Article in English | MEDLINE | ID: mdl-16688354

ABSTRACT

This paper describes a new dual-channel PEroxy RadiCal Amplification (PERCA) instrument, which has been designed to improve the time resolution and signal to noise and to reduce the interference caused by variations in ambient ozone concentrations. The instrument was run at the Weybourne Atmospheric Observatory (WAO), North Norfolk, during WAOWEX (Weybourne Atmospheric Observatory Winter Experiment) in January/February 2002 and INSPECTRO (Influence of clouds on the spectral actinic flux in the lower troposphere) in September 2002. The performance of the instrument is assessed and compared to that of a single channel instrument. In particular, it is shown how the precision is greatly improved in fluctuating background ozone conditions. In addition the improved time response of the instrument allows changes in peroxy radical concentrations to be related to rapid changes in nitric oxide concentrations and the ozone photolysis frequency, j(O(1)D).


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Ozone/analysis , Peroxides/analysis , Environmental Monitoring/instrumentation , Nitric Oxide/analysis , Photolysis , Sensitivity and Specificity , Spectrum Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL