Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 915: 169639, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38181952

ABSTRACT

Municipal biosolids are a nitrogen (N)-rich agricultural fertilizer which may emit nitrous oxide (N2O) after rainfall events. Due to sparse empirical data, there is a lack of biosolids-specific N2O emission factors to determine how land-applied biosolids contribute to the national greenhouse gas inventory. This study estimated N2O emissions from biosolids-amended land in Canada using Tier 1, Tier 2 (Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC). Field data was from replicated plots at 8 site-years between 2017 and 2019 in the provinces of Quebec, Nova Scotia and Alberta, Canada, representing three distinct ecozones. Municipal biosolids were the major N source for the crop, applied as mesophilic anaerobically digested biosolids, composted biosolids, or alkaline-stabilized biosolids alone or combined with an equal amount of urea-N fertilizer to meet the crop N requirements. Fluxes of N2O were measured during the growing season with manual chambers and compared to N2O emissions estimated using the IPCC methods. In all site-years, the mean emission of N2O in the growing season was greater with digested biosolids than other biosolids sources or urea fertilizer alone. The emissions of N2O in the growing season were similar with composted or alkaline-stabilized biosolids, and no greater than the unfertilized control. The best estimates of N2O emissions, relative to measured values, were with the Tier 3 > adapted Tier 2 with biosolids-specific correction factors > standard Tier 2 = Tier 1 methods of the IPCC, according to the root mean square error statistic. The Tier 3 IPCC method was the best estimator of N2O emissions in the Canadian ecozones evaluated in this study. These results will be used to improve methods for estimating N2O emissions from agricultural soils amended with biosolids and to generate more accurate GHG inventories.


Subject(s)
Nitrous Oxide , Soil , Nitrous Oxide/analysis , Biosolids , Fertilizers , Agriculture , Nitrogen/analysis , Urea , Alberta
2.
Carbon Balance Manag ; 18(1): 11, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422567

ABSTRACT

During a time of rapid urban growth and development, it is becoming ever more important to monitor the carbon fluxes of our cities. Unlike Canada's commercially managed forests that have a long history of inventory and modelling tools, there is both a lack of coordinated data and considerable uncertainty on assessment procedures for urban forest carbon. Nonetheless, independent studies have been carried out across Canada. To improve upon Canada's federal government reporting on carbon storage and sequestration by urban forests, this study builds on existing data to develop an updated assessment of carbon storage and sequestration for Canada's urban forests. Using canopy cover estimates derived from ortho-imagery and satellite imagery ranging from 2008 to 2012 and field-based urban forest inventory and assessment data from 16 Canadian cities and one US city, this study found that Canadian urban forests store approximately 27,297.8 kt C (- 37%, + 45%) in above and belowground biomass and sequester approximately 1497.7 kt C year-1 (- 26%, + 28%). In comparison with the previous national assessment of urban forest carbon, this study suggested that in urban areas carbon storage has been overestimated and carbon sequestration has been underestimated. Maximizing urban forest carbon sinks will contribute to Canada's mitigation efforts and, while being a smaller carbon sink compared to commercial forests, will also provide important ecosystem services and co-benefits to approximately 83% of Canadian people.

3.
Sci Total Environ ; 718: 137273, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32088477

ABSTRACT

Grazing of natural rangeland and seeded pasture is an important feeding strategy for the Canadian beef cattle industry. As a consequence, beef cattle population has a direct influence on the proportion of land base maintained as perennial forage, which in turn changes soil organic carbon (SOC) stocks. We examined historical relationships between the net change in SOC resulting from perennial/annual crop conversion and beef cattle populations. We observed strong negative linear relationships, both regionally and nationally, between the population of beef cattle and the estimated change in SOC (negative sign indicating soil C sink) resulting from the conversion of annual crops and vice versa. These relationships indicate that as beef cattle population declines there is a corresponding loss of SOC resulting from a reduction in the relative proportion of perennial to annual crops on the landscape. The annual C loss resulting from land use conversion was roughly equivalent to 62% (±13%) of the combined enteric and manure annual emissions of CH4 and N2O [(1400 (±440) kg CO2 eq head-1 yr-1] resulting in net greenhouse gas emissions of 850 (±360) kg CO2 eq head-1 yr-1. These results highlight the importance of an integrated analysis that considers land use conversion and its impact on SOC when assessing the environmental footprint associated with beef cattle production.


Subject(s)
Red Meat , Soil , Animals , Canada , Carbon , Cattle , Manure
SELECTION OF CITATIONS
SEARCH DETAIL
...