Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(16): 11056-11077, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37485869

ABSTRACT

Mycobacterium tuberculosis (Mtb) drug resistance poses an alarming threat to global tuberculosis control. We previously reported that C10, a ring-fused thiazolo-2-pyridone, inhibits Mtb respiration, blocks biofilm formation, and restores the activity of the antibiotic isoniazid (INH) in INH-resistant Mtb isolates. This discovery revealed a new strategy to address INH resistance. Expanding upon this strategy, we identified C10 analogues with improved potency and drug-like properties. By exploring three heterocycle spacers (oxadiazole, 1,2,3-triazole, and isoxazole) on the ring-fused thiazolo-2-pyridone scaffold, we identified two novel isoxazoles, 17h and 17j. 17h and 17j inhibited Mtb respiration and biofilm formation more potently with a broader therapeutic window, were better potentiators of INH-mediated inhibition of an INH-resistant Mtb mutant, and more effectively inhibited intracellular Mtb replication than C10. The (-)17j enantiomer showed further enhanced activity compared to its enantiomer and the 17j racemic mixture. Our potent second-generation C10 analogues offer promise for therapeutic development against drug-resistant Mtb.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid/pharmacology , Isoniazid/therapeutic use , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Drug Resistance, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Isoxazoles/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins
2.
J Lipid Res ; 57(1): 142-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26574042

ABSTRACT

Both phthiocerol/phthiodiolone dimycocerosate (PDIM) and phenolic glycolipids are abundant virulent lipids in the cell wall of various pathogenic mycobacteria, which can synthesize a wide range of complex high-molecular-mass lipids. In this article, we describe linear ion-trap MS(n) mass spectrometric approach for structural study of PDIMs, which were desorbed as the [M + Li](+) and [M + NH(4)](+) ions by ESI. We also applied charge-switch strategy to convert the mycocerosic acid substituents to their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives and analyzed them as M (+) ions, following alkaline hydrolysis of the PDIM to release mycocerosic acids. The structural information from MS(n) on the [M + Li](+) and [M + NH(4)](+) molecular species and on the M (+) ions of the mycocerosic acid-AMPP derivative affords realization of the complex structures of PDIMs in Mycobacterium tuberculosis biofilm, differentiation of phthiocerol and phthiodiolone lipid families and complete structure identification, including the phthiocerol and phthiodiolone backbones, and the mycocerosic acid substituents, including the locations of their multiple methyl side chains, can be achieved.


Subject(s)
Esters/chemistry , Gas Chromatography-Mass Spectrometry/methods , Lipids/chemistry , Mycobacterium tuberculosis/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Biofilms , Esters/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Glycolipids/chemistry , Lipids/analysis , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology
3.
Mol Imaging ; 7(5): 222-33, 2008.
Article in English | MEDLINE | ID: mdl-19123992

ABSTRACT

Salmonella Typhimurium is a common cause of gastroenteritis in humans and also localizes to neoplastic tumors in animals. Invasion of specific eukaryotic cells is a key mechanism of Salmonella interactions with host tissues. Early stages of gastrointestinal cell invasion are mediated by a Salmonella type III secretion system, powered by the adenosine triphosphatase invC. The aim of this work was to characterize the invC dependence of invasion kinetics into disparate eukaryotic cells traditionally used as models of gut epithelium or neoplasms. Thus, a nondestructive real-time assay was developed to report eukaryotic cell invasion kinetics using lux+ Salmonella that contain chromosomally integrated luxCDABE genes. Bioluminescence-based invasion assays using lux+ Salmonella exhibited inoculum dose-response correlation, distinguished invasion-competent from invasion-incompetent Salmonella, and discriminated relative Salmonella invasiveness in accordance with environmental conditions that induce invasion gene expression. In standard gentamicin protection assays, bioluminescence from lux+ Salmonella correlated with recovery of colony-forming units of internalized bacteria and could be visualized by bioluminescence microscopy. Furthermore, this assay distinguished invasion-competent from invasion-incompetent bacteria independent of gentamicin treatment in real time. Bioluminescence reported Salmonella invasion of disparate eukaryotic cell lines, including neoplastic melanoma, colon adenocarcinoma, and glioma cell lines used in animal models of malignancy. In each case, Salmonella invasion of eukaryotic cells was invC dependent.


Subject(s)
Bacterial Proteins/genetics , Genes, Bacterial , Proton-Translocating ATPases/genetics , Salmonella Infections/genetics , Salmonella typhimurium/genetics , Adenocarcinoma/genetics , Anti-Bacterial Agents/pharmacology , Brain Neoplasms/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Gentamicins/pharmacology , Glioma/genetics , HT29 Cells , Humans , Kinetics , Luminescence , Luminescent Measurements , Melanoma/genetics , Photorhabdus/genetics , Salmonella Infections/microbiology , Salmonella Infections/pathology , Salmonella typhimurium/metabolism , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...