Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nature ; 618(7966): 808-817, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344645

ABSTRACT

Niche signals maintain stem cells in a prolonged quiescence or transiently activate them for proper regeneration1. Altering balanced niche signalling can lead to regenerative disorders. Melanocytic skin nevi in human often display excessive hair growth, suggesting hair stem cell hyperactivity. Here, using genetic mouse models of nevi2,3, we show that dermal clusters of senescent melanocytes drive epithelial hair stem cells to exit quiescence and change their transcriptome and composition, potently enhancing hair renewal. Nevus melanocytes activate a distinct secretome, enriched for signalling factors. Osteopontin, the leading nevus signalling factor, is both necessary and sufficient to induce hair growth. Injection of osteopontin or its genetic overexpression is sufficient to induce robust hair growth in mice, whereas germline and conditional deletions of either osteopontin or CD44, its cognate receptor on epithelial hair cells, rescue enhanced hair growth induced by dermal nevus melanocytes. Osteopontin is overexpressed in human hairy nevi, and it stimulates new growth of human hair follicles. Although broad accumulation of senescent cells, such as upon ageing or genotoxic stress, is detrimental for the regenerative capacity of tissue4, we show that signalling by senescent cell clusters can potently enhance the activity of adjacent intact stem cells and stimulate tissue renewal. This finding identifies senescent cells and their secretome as an attractive therapeutic target in regenerative disorders.


Subject(s)
Hair , Melanocytes , Signal Transduction , Animals , Mice , Hair/cytology , Hair/growth & development , Hair Follicle/cytology , Hair Follicle/physiology , Hyaluronan Receptors/metabolism , Melanocytes/cytology , Melanocytes/metabolism , Nevus/metabolism , Nevus/pathology , Osteopontin/metabolism , Stem Cells/cytology
3.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35653192

ABSTRACT

Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.


Subject(s)
Vitiligo , CD8-Positive T-Lymphocytes , Humans , Keratinocytes , Melanocytes , Skin
4.
Cell ; 185(12): 2071-2085.e12, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35561684

ABSTRACT

Giant congenital melanocytic nevi are NRAS-driven proliferations that may cover up to 80% of the body surface. Their most dangerous consequence is progression to melanoma. This risk often triggers preemptive extensive surgical excisions in childhood, producing severe lifelong challenges. We have presented preclinical models, including multiple genetically engineered mice and xenografted human lesions, which enabled testing locally applied pharmacologic agents to avoid surgery. The murine models permitted the identification of proliferative versus senescent nevus phases and treatments targeting both. These nevi recapitulated the histologic and molecular features of human giant congenital nevi, including the risk of melanoma transformation. Cutaneously delivered MEK, PI3K, and c-KIT inhibitors or proinflammatory squaric acid dibutylester (SADBE) achieved major regressions. SADBE triggered innate immunity that ablated detectable nevocytes, fully prevented melanoma, and regressed human giant nevus xenografts. These findings reveal nevus mechanistic vulnerabilities and suggest opportunities for topical interventions that may alter the therapeutic options for children with congenital giant nevi.


Subject(s)
Melanoma , Nevus, Pigmented , Skin Neoplasms , Animals , Heterografts , Humans , Melanoma/drug therapy , Melanoma/pathology , Mice , Neoplasm Transplantation , Nevus, Pigmented/congenital , Nevus, Pigmented/drug therapy , Nevus, Pigmented/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control
6.
Cell Rep ; 39(1): 110641, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385746

ABSTRACT

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Subject(s)
Endothelial Cells , Neoplasms , Animals , Endothelial Cells/metabolism , Humans , Mice , Neoplasms/drug therapy , Neovascularization, Pathologic , Signal Transduction , Tumor Microenvironment , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
7.
Epigenomes ; 5(4)2021 Dec.
Article in English | MEDLINE | ID: mdl-34691767

ABSTRACT

Epigenetic regulation is a crucial component of DNA maintenance and cellular identity. As our understanding of the vast array of proteins that contribute to chromatin accessibility has advanced, the role of epigenetic remodelers in disease has become more apparent. G9a is a histone methyltransferase that contributes to immune cell differentiation and function, neuronal development, and has been implicated in diseases, including cancer. In melanoma, recurrent mutations and amplifications of G9a have led to its identification as a therapeutic target. The pathways that are regulated by G9a provide an insight into relevant biomarkers for patient stratification. Future work is aided by the breadth of literature on G9a function during normal differentiation and development, along with similarities to EZH2, another histone methyltransferase that forms a synthetic lethal relationship with members of the SWI/SNF complex in certain cancers. Here, we review the literature on G9a, its role in melanoma, and lessons from EZH2 inhibitor studies.

9.
Commun Biol ; 3(1): 453, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814826

ABSTRACT

Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.


Subject(s)
Cell Differentiation , Cell Self Renewal , Colon , Enterocytes/metabolism , Proteome , Stem Cells/metabolism , Transcriptome , Animals , Biomarkers , Cell Self Renewal/genetics , Computational Biology/methods , Enterocytes/cytology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Immunophenotyping , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Proteomics , RNA Processing, Post-Transcriptional , Stem Cells/cytology
10.
Pigment Cell Melanoma Res ; 33(2): 279-292, 2020 03.
Article in English | MEDLINE | ID: mdl-31562697

ABSTRACT

MITF, a gene that is mutated in familial melanoma and Waardenburg syndrome, encodes multiple isoforms expressed from alternative promoters that share common coding exons but have unique amino termini. It is not completely understood how these isoforms influence pigmentation in different tissues and how the expression of these independent isoforms of MITF is regulated. Here, we show that melanocytes express two isoforms of MITF, MITF-A and MITF-M. The expression of MITF-A is partially regulated by a newly identified retinoid enhancer element located upstream of the MITF-A promoter. Mitf-A knockout mice have only subtle changes in melanin accumulation in the hair and reduced Tyr expression in the eye. In contrast, Mitf-M-null mice have enlarged kidneys, lack neural crest-derived melanocytes in the skin, choroid, and iris stroma, yet maintain pigmentation within the retinal pigment epithelium and iris pigment epithelium of the eye. Taken together, these studies identify a critical role for MITF-M in melanocytes, a minor role for MITF-A in regulating pigmentation in the hair and Tyr expression in the eye, and a novel role for MITF-M in size control of the kidney.


Subject(s)
Homeostasis , Microphthalmia-Associated Transcription Factor/metabolism , Pigmentation , Animals , Binding Sites , Cell Line, Tumor , Eye/pathology , HEK293 Cells , Homeostasis/drug effects , Humans , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microphthalmia-Associated Transcription Factor/genetics , Phenotype , Pigmentation/drug effects , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Isoforms/metabolism , Retinoic Acid Receptor alpha/metabolism , Retinoids/pharmacology
11.
PLoS Genet ; 14(3): e1007290, 2018 03.
Article in English | MEDLINE | ID: mdl-29584722

ABSTRACT

PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.


Subject(s)
Melanosomes/metabolism , Phosphatidylinositol 3-Kinases/physiology , Animals , Flavoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Melanins/metabolism , Membrane Proteins , Mice , Mice, Knockout , Organelles/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide Phosphatases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...