Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 25(19): 1466-8, 2000 Oct 01.
Article in English | MEDLINE | ID: mdl-18066250

ABSTRACT

We built a direct-detection Doppler lidar based on the double-edge molecular technique and made the what we believe to be the first molecular-based wind measurements using the eye-safe 355-nm wavelength. Three etalon bandpasses are obtained with step etalons on a single pair of etalon plates. We eliminate long-term frequency drift of the laser and the capacitively stabilized etalon by locking the etalon to the laser frequency. We use a low-angle design to avoid polarization effects. Wind measurements of 1-2-m /s accuracy are obtained to 10-km altitude with 5 mJ of laser energy, a 750-s integration, and a 25-cm telescope. Good agreement is obtained between lidar and rawinsonde measurements.

2.
Appl Opt ; 38(3): 432-40, 1999 Jan 20.
Article in English | MEDLINE | ID: mdl-18305631

ABSTRACT

The theory of the double-edge lidar technique for measuring the wind with molecular backscatter is described. Two high-spectral-resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and improves measurement accuracy relative to the single-edge technique by nearly a factor of 2. The use of a crossover region where the sensitivity of a molecular- and an aerosol-based measurement is equal is described. Use of this region desensitizes the molecular measurement to the effects of aerosol scattering over a velocity range of +/-100 m/s. We give methods for correcting short-term, shot-to-shot, frequency jitter and drift with a laser reference frequency measurement and methods for long-term frequency correction with a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1-km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial resolution.

3.
Appl Opt ; 37(12): 2238-41, 1998 Apr 20.
Article in English | MEDLINE | ID: mdl-18273147

ABSTRACT

The A1-sequences and the A2-sequences have been proposed to replace the M-sequence that is generally used to modulate continuous-wave pseudorandom noise lidar. These new sequences, under two hypotheses, provide a reduction in the background noise, which is especially significant in noisy conditions when one uses M-sequences. We show that one of these two hypotheses is not verified for cloudy atmospheric conditions. Thus, the A1- and the A2-sequences cannot be used for such conditions.

4.
Appl Opt ; 37(15): 3097-104, 1998 May 20.
Article in English | MEDLINE | ID: mdl-18273256

ABSTRACT

The theory of the double-edge technique is described by a generalized formulation that substantially extends the capabilities of the edge technique. It uses two edges with opposite slopes located about the laser frequency. This doubles the signal change for a given Doppler shift and yields a factor of 1.6 improvement in the measurement accuracy compared with the single-edge technique. Use of two high-resolution edge filters reduces the effects of Rayleigh scattering on the measurement by as much as an order of magnitude and allows the signal-to-noise ratio to be substantially improved in areas of low aerosol backscatter. We describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. The effects of Rayleigh scattering are then subtracted from the measurement, and we show that the correction process does not significantly increase the measurement noise for Rayleigh-to-aerosol ratios as high as 10. We show that for small Doppler shifts a measurement accuracy of 0.4 m/s can be obtained for 5000 detected photons, 1.2 m/s for 1000 detected photons, and 3.7 m/s for 50 detected photons for a Rayleigh-to-aerosol ratio of 5. Methods for increasing the dynamic range to more than +/-100 m/s are given.

6.
Appl Opt ; 35(15): 2637-41, 1996 May 20.
Article in English | MEDLINE | ID: mdl-21085409

ABSTRACT

The contribution of multiple scattering to a spaceborne lidar return from clear molecular atmosphere obscured by transparent upper-level crystal clouds is assessed by the use of the variance-reduction Monte Carlo technique. High anisotropy of scattering in the forward direction by polydispersions of ice crystals is the basis of a significant effect of multiple scattering for small values of the lidar receiver field of view. Because of scattering by large nonspherical crystal particles, the lidar signal backscattered from the molecular atmosphere under the cloud increases significantly compared with the single-scattering return. The ratio of the multiple-to-single-scattering contributions from the clear atmosphere hidden by the clouds is greater than from the crystal clouds themselves, and it is proportional to the values of cloud optical thickness.

7.
Appl Opt ; 35(36): 7151-64, 1996 Dec 20.
Article in English | MEDLINE | ID: mdl-21151321

ABSTRACT

Lidar measurements are often interpreted on the basis of two fundamental assumptions: absence of multiple scattering and sphericity of the particles that make up the diffusing medium. There are situations in which neither holds true. We focus our interest on multiply-scattered returns from homogeneous layers of monodisperse, randomly oriented, axisymmetric nonspherical particles. T(2) Chebyshev particles have been chosen and their single-scattering properties have been reviewed. A Monte Carlo procedure has been employed to calculate the backscattered signal for several fields of view. Comparisons with the case of scattering from equivalent (equal-volume) spheres have been carried out (narrow polydispersions have been used to smooth the phase functions' oscillations). Our numerical effort highlights a considerable variability in the intensity of the multiply-scattered signal, which is a consequence of the strong dependence of the backscattering cross section on deformation of the particles. Even more striking effects have been noted for depolarization; peculiar behavior was observed at moderate optical depths when particles characterized by a large backscattering depolarization ratio were employed in our simulations. The sensitivity of depolarization to even small departures from sphericity, in spite of random orientation of the particles, has been confirmed. The results obtained with the Monte Carlo codes have been successfully checked with an analytical formula for double scattering.

9.
Phys Rev A Gen Phys ; 40(7): 4011-4018, 1989 Oct 01.
Article in English | MEDLINE | ID: mdl-9902620
SELECTION OF CITATIONS
SEARCH DETAIL
...