Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4446, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35292669

ABSTRACT

Plasma convection in the Earth's magnetosphere from the distant magnetotail to the inner magnetosphere occurs largely in the form of mesoscale flows, i.e., discrete enhancements in the plasma flow with sharp dipolarizations of magnetic field. Recent spacecraft observations suggest that the dipolarization flows are associated with a wide range of kinetic processes such as kinetic Alfvén waves, whistler-mode waves, and nonlinear time-domain structures. In this paper we explore how mesoscale dipolarization flows produce suprathermal electron instabilities, thus providing free energy for the generation of the observed kinetic waves and structures. We employ three-dimensional test-particle simulations of electron dynamics one-way coupled to a global magnetospheric model. The simulations show rapid growth of interchanging regions of parallel and perpendicular electron temperature anisotropies distributed along the magnetic terrain formed around the dipolarization flows. Unencumbered in test-particle simulations, a rapid growth of velocity-space anisotropies in the collisionless magnetotail plasma is expected to be curbed by the generation of plasma waves. The results are compared with in situ observations of an isolated dipolarization flow at one of the Magnetospheric Multiscale Mission spacecraft. The observations show strong wave activity alternating between broad-band wave activity and whistler waves. With estimated spatial extent being similar to the characteristic size of the temperature anisotropy patches in our test-particle simulations, the observed bursts of the wave activity are likely to be produced by the parallel and perpendicular electron energy anisotropies driven by the dipolarization flow, as suggested by our modeling results.

2.
Sci Rep ; 8(1): 17186, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30464295

ABSTRACT

The unprecedented high-resolution data from the Magnetospheric Multi-Scale (MMS) satellites is revealing the physics of dipolarization fronts created in the aftermath of magnetic reconnection in extraordinary detail. The data shows that the fronts contain structures on small spatial scales beyond the scope of fluid framework. A new kinetic analysis, applied to MMS data here, predicts that global plasma compression produces a unique particle distribution in a narrow boundary layer with separation of electron and ion scale physics. Layer widths on the order of an ion gyro-diameter lead to an ambipolar potential across the magnetic field resulting in strongly sheared flows. Gradients along the magnetic field lines create a potential difference, which can accelerate ions and electrons into beams. These small-scale kinetic effects determine the plasma dynamics in dipolarization fronts, including the origin of the distinctive broadband emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...