Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(40): 25781-25795, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29899821

ABSTRACT

Migratory cells form extracellular matrix attachments called focal-adhesions. Focal adhesion assembly and disassembly are regulated by the Rho family of small GTPases. We previously reported that polyisoprenylated cysteinyl amide inhibitors (PCAIs) suppress Rho protein levels, disrupting F-actin cytoskeleton remodeling in the formation of lamellipodia and filopodia. In this study, we investigated whether these observations effect focal adhesion formation, which involves cell surface receptors known as integrins and several signaling/adaptor proteins such as vinculin, α-actinin, Rock kinases and phospho-Myosin Light Chain-2 (p-MLC-2), that foster the linkage of the actin cytoskeleton to the extracellular matrix. We observed that treatment of H1299 cells with 5 µM PCAIs for 24 h markedly diminished the level of full-length integrin α4 by at least 24% relative to controls. PCAIs at 5 µM, diminished the levels of vinculin by at least 50%. Immunofluorescent analysis showed at least a 76% decrease in the number of vinculin-focal adhesion punctates. In addition, PCAIs diminished Rock1 levels by 25% and its substrate, p-MLC-2 by 75%. PCAIs did not significantly alter the levels of integrin ß5, α-actinin, and Rock2, suggesting that the effects of the PCAIs are target specific. Our data indicate that the PCAIs alter the levels of the Rho proteins and their effectors to abrogate their functions in cytoskeleton remodeling thereby suppressing focal adhesion formation. This in turn results in a PCAIs-induced decrease in cell invasion, thus making the PCAIs propitious agents for the inhibition of cancer growth and metastasis.

2.
Oncotarget ; 8(19): 31726-31744, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28423648

ABSTRACT

The malignant potential of Non-Small Cell Lung Cancer (NSCLC) is dependent on cellular processes that promote metastasis. F-actin organization is central to cell migration, invasion, adhesion and angiogenesis, processes involved in metastasis. F-actin remodeling is enhanced by the overexpression and/or hyper-activation of some members of the Rho family of small GTPases. Therefore, agents that mitigate hyperactive Rho proteins may be relevant for controlling metastasis. We previously reported the role of polyisoprenylated cysteinyl amide inhibitors (PCAIs) as potential inhibitors of cancers with hyperactive small GTPases. In this report, we investigate the potential role of PCAIs against NSCLC cells and show that as low as 0.5 µM PCAIs significantly inhibit 2D and 3D NCI-H1299 cell migration by 48% and 45%, respectively. PCAIs at 1 µM inhibited 2D and 3D NCI-H1299 cell invasion through Matrigel by 50% and 85%, respectively. Additionally, exposure to 5 µM of the PCAIs for 24 h caused at least a 66% drop in the levels of Rac1, Cdc42, and RhoA and a 38% drop in F-actin intensity at the cell membrane. This drop in F-actin was accompanied by a 73% reduction in the number of filopodia per cell. Interestingly, the polyisoprenyl group of the PCAIs is essential for these effects, as NSL-100, a non-farnesylated analog, does not elicit similar effects on F-actin assembly and organization. Our findings indicate that PCAIs disrupt F-actin assembly and organization to suppress cell motility and invasion. The PCAIs may be an effective therapy option for NSCLC metastasis and invasion control.


Subject(s)
Actins/metabolism , Amides/pharmacology , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Movement/drug effects , Lung Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Protein Binding , Pseudopodia/drug effects , Pseudopodia/metabolism , Spheroids, Cellular , Tumor Cells, Cultured , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...