Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Med Phys Fitness ; 59(3): 357-365, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29619796

ABSTRACT

BACKGROUND: The combined effects of sprint interval training (SIT) and exercising in the fasted state are unknown. We compared the effects of SIT with exogenous carbohydrate supplementation (SIT-CHO) and SIT following overnight fast (SIT-Fast) on aerobic capacity (peak oxygen consumption: V̇O2peak) and high-intensity aerobic endurance (time-to-exhaustion at 85% V̇O2peak [T85%]). METHODS: Twenty male cyclists were randomized to SIT-CHO and SIT-Fast. Both groups performed 30-second all-out cycling followed by 4-minute active recovery 3 times per week for 4 weeks, with the number of sprint bouts progressing from 4 to 7. Peak power output (PPO) and total mechanical work were measured for each sprint interval bout. The SIT-CHO group performed exercise sessions following breakfast and consumed carbohydrate drink during exercise, whereas the SIT-Fast group performed exercise sessions following overnight fast and consumed water during exercise. Before and after training, V̇O2peak and T85% were assessed. Blood glucose, non-esterified fatty acids, insulin and glucagon concentrations were measured during T85%. RESULTS: Overall PPO and mechanical work were lower in SIT-Fast than SIT-CHO (3664.9 vs. 3871.7 J/kg; P=0.021 and 10.6 vs. 9.9 W/kg; P=0.010, respectively). Post-training V̇O2peak did not differ between groups. Baseline-adjusted post-training T85% was longer in SIT-Fast compared to SIT-CHO (19.7±3.0 vs. 16.6±3.0 minutes, ANCOVA P=0.038) despite no changes in circulating energy substrates or hormones. CONCLUSIONS: Our results suggest that SIT-Fast compromises exercise intensity and volume but still can have a greater impact on the ability to sustain high-intensity aerobic endurance exercise compared to SIT-CHO.


Subject(s)
Exercise/physiology , Fasting/physiology , High-Intensity Interval Training , Physical Endurance/physiology , Adult , Anaerobic Threshold/physiology , Bicycling/physiology , Humans , Male
2.
PLoS One ; 13(12): e0209289, 2018.
Article in English | MEDLINE | ID: mdl-30571789

ABSTRACT

In most vertebrate animals, glucocorticoid hormones are the chief mediators of homeostasis in response to ecological conditions and as they progress through their lifecycle. In addition, glucocorticoids are a major part of the stress response and stress induced elevations of the hormone can make it difficult to assess glucocorticoid secretion in response to changes in life-stage and current environmental conditions in wild animals. Particularly when quantifying circulating levels of glucocorticoids in the blood which fluctuate rapidly in response to stress. An alternative method of quantifying glucocorticoids is as hormone metabolites in faeces or urine giving a historical sample related to the gut passage time and urinary tract that is less sensitive to stressful events which cause spikes in the circulating hormone level. Although the concentration of glucocorticoid metabolites are influenced by faecal mass thereby potentially affecting any differences in hormone metabolites detected amongst samples. In the present study, we aimed to detect changes in levels of corticosterone, the primary bird glucocorticoid, in relation to the phase of reproduction, in a breeding population of collared flycatchers by sampling corticosterone metabolites in droppings. We also tested how corticosterone metabolite concentrations were affected by ambient temperature and related to body condition in adult birds. Our results indicate that the upregulation of corticosterone between incubation and nestling feeding in female birds is crucial for successful reproduction in this species. Also, females appear to downregulate corticosterone during incubation in response to lower ambient temperature and poorer body condition. Our results did not indicate a relationship between dropping mass and corticosterone metabolite concentrations, which suggests that our findings were linked to the regulation of corticosterone in response to predictable and unpredictable challenges.


Subject(s)
Corticosterone/metabolism , Glucocorticoids/metabolism , Songbirds/metabolism , Animals , Animals, Wild , Feces/chemistry , Female , Homeostasis , Male , Reproduction/physiology , Songbirds/physiology , Stress, Physiological , Sweden , Temperature
3.
Article in English | MEDLINE | ID: mdl-28744255

ABSTRACT

BACKGROUND: The glycemic and insulinemic responses following 30-60 min of exercise have been extensively studied, and a dose-response has been proposed between exercise duration, or volume, and improvements in glucose tolerance or insulin sensitivity. However, few studies have examined the effects of longer bouts of exercise in type 2 diabetes (T2D). Longer bouts may have a greater potential to affect glucagon, interleukin-6 (IL-6) and incretin hormones [i.e., glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP)]. AIM: To examine the effect of two bouts of long-duration, moderate-intensity exercise on incretins, glucagon, and IL-6 responses before and after exercise, as well as in response to an oral glucose tolerance test (OGTT) conducted the following day. METHODS: Twelve men, six with and six without T2D, participated in two separate conditions (i.e., exercise vs. rest) according to a randomized crossover design. On day 1, participants either rested or performed two 90 min bouts of treadmill exercise (separated by 3.5 h) at 80% of their ventilatory threshold. All participants received standardized meals on day 1. On day 2 of each condition, glucose and hormonal responses were measured during a 4-h OGTT. RESULTS: On day 1, exercise increased IL-6 at the end of the first bout of exercise (exercise by time interaction p = 0.03) and GIP overall (main effect of exercise p = 0.004). Glucose was reduced to a greater extent in T2D following exercise (exercise by T2D interaction p = 0.03). On day 2, GIP and active GLP-1 were increased in the fasting state (p = 0.05 and p = 0.03, respectively), while plasma insulin and glucagon concentrations were reduced during the OGTT (p = 0.01 and p = 0.02, respectively) in the exercise compared to the rest condition for both healthy controls and T2D. Postprandial glucose was elevated in T2D compared to healthy control (p < 0.05) but was not affected by exercise. CONCLUSION: Long-duration, moderate-intensity aerobic exercise can increase IL-6. On the day following exercise, fasting incretins remained increased but postprandial insulin and glucagon were decreased without affecting postprandial glucose. This long duration of exercise may not be appropriate for some people, and further research should investigate why next day glucose tolerance was unchanged.

4.
Acta Diabetol ; 53(5): 769-81, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27255501

ABSTRACT

AIMS: To conduct a meta-analysis of head-to-head trials comparing aerobic exercise training of different intensities on glycemic control in type 2 diabetes. METHODS: Databases, including MEDLINE and EMBASE, were searched up to January 2016. Randomized trials of at least 12 weeks in duration that compared two exercise interventions of different intensities were identified. Two reviewers independently extracted data from eligible trials. Using fixed effect model, weighted mean differences (WMD) between different exercise intensities were calculated for changes in glycated hemoglobin (HbA1c) and secondary outcomes, such as fasting glucose and fasting insulin. RESULTS: Eight studies with a total of 235 participants were eligible. The exercise interventions lasted from 12 weeks to 6 months. The prescribed exercise intensities varied among studies. Four studies utilized vigorous exercise intensities for short durations by performing interval training. Overall, higher-intensity exercise resulted in a greater reduction in HbA1c compared to lower-intensity exercise (WMD = -0.22 %; 95 % confidence interval [-0.38, -0.06]; or -2.4 mmol/mol [-4.15, -0.66], I (2) = 0). Adherence to exercise and proportion of dropouts did not differ within trials. No adverse events were reported in these small trials with selected inclusion criteria. CONCLUSIONS: Although our meta-analysis had a limited sample size, increasing exercise intensity safely accentuated reductions in HbA1c in some people with type 2 diabetes. Different approaches have been used to increase exercise intensity (i.e., some used interval training, whereas others used higher-intensity continuous exercise). However, at this time, it is unclear which form, if any, leads to the most favorable results.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Exercise Therapy , Exercise , Blood Glucose/metabolism , Female , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...