Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 385(1): 131-9, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-18976664

ABSTRACT

Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role of E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.


Subject(s)
Actinobacteria/enzymology , Chitosan/metabolism , Hexosaminidases/chemistry , Hexosaminidases/metabolism , Catalysis , Catalytic Domain , Glucosamine/metabolism , Hydrolysis , Models, Molecular , Mutant Proteins/metabolism , Protein Structure, Secondary , Structure-Activity Relationship , Substrate Specificity
2.
BMC Bioinformatics ; 8: 286, 2007 Aug 04.
Article in English | MEDLINE | ID: mdl-17683581

ABSTRACT

BACKGROUND: The rapid burgeoning of available protein data makes the use of clustering within families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily related sequences. This identification reveals phylogenetic relationships, which provide prior knowledge to help researchers understand biological phenomena. A good evolutionary model is essential to achieve a clustering that reflects the biological reality, and an accurate estimate of protein sequence similarity is crucial to the building of such a model. Most existing algorithms estimate this similarity using techniques that are not necessarily biologically plausible, especially for hard-to-align sequences such as proteins with different domain structures, which cause many difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity measure based on matching amino acid subsequences. This measure, named SMS for Substitution Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences. Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein families. In the rest of the paper, we use the term "phylogenetic" in the sense of "relatedness of biological functions". RESULTS: To show the effectiveness of CLUSS, we performed an extensive clustering on COG database. To demonstrate its ability to deal with hard-to-align sequences, we tested it on the GH2 family. In addition, we carried out experimental comparisons of CLUSS with a variety of mainstream algorithms. These comparisons were made on hard-to-align and easy-to-align protein sequences. The results of these experiments show the superiority of CLUSS in yielding clusters of proteins with similar functional activity. CONCLUSION: We have developed an effective method and tool for clustering protein sequences to meet the needs of biologists in terms of phylogenetic analysis and prediction of biological functions. Compared to existing clustering methods, CLUSS more accurately highlights the functional characteristics of the clustered families. It provides biologists with a new and plausible instrument for the analysis of protein sequences, especially those that cause problems for the alignment-dependent algorithms.


Subject(s)
Algorithms , Evolution, Molecular , Multigene Family/genetics , Proteins/genetics , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Software , Amino Acid Sequence , Cluster Analysis , Molecular Sequence Data , Proteins/chemistry , Sequence Homology, Amino Acid
3.
Glycobiology ; 16(11): 1064-72, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16877749

ABSTRACT

Catalytic residues and the mode of action of the exo-beta-D-glucosaminidase (GlcNase) from Amycolatopsis orientalis were investigated using the wild-type and mutated enzymes. Mutations were introduced into the putative catalytic residues resulting in five mutated enzymes (D469A, D469E, E541D, E541Q, and S468N/D469E) that were successfully produced. The four single mutants were devoid of enzymatic activity, indicating that Asp469 and Glu541 are essential for catalysis as predicted by sequence alignments of enzymes belonging to GH-2 family. When mono-N-acetylated chitotetraose [(GlcN)3-GlcNAc] was hydrolyzed by the enzyme, the nonreducing-end glucosamine unit was produced together with the transglycosylation products. The rate of hydrolysis of the disaccharide, 2-amino-2-deoxy-D-glucopyranosyl 2-acetamido-2-deoxy-D-glucopyranose (GlcN-GlcNAc), was slightly lower than that of (GlcN)2, suggesting that N-acetyl group of the sugar residue located at (+1) site partly interferes with the catalytic reaction. The time-course of the enzymatic hydrolysis of the completely deacetylated chitotetraose [(GlcN)4] was quantitatively determined by high-performance liquid chromatography (HPLC) and used for in silico modeling of the enzymatic hydrolysis. The modeling study provided the values of binding free energy changes of +7.0, -2.9, -1.8, -0.9, -1.0, and -0.5 kcal/mol corresponding, respectively, to subsites (-2), (-1), (+1), (+2), (+3), and (+4). When chitosan polysaccharide was hydrolyzed by a binary enzyme system consisting of A. orientalis GlcNase and Streptomyces sp. N174 endochitosanase, the highest synergy in the rate of product formation was observed at the molar ratio 2:1. Thus, GlcNase would be an efficient tool for industrial production of glucosamine monosaccharide.


Subject(s)
Actinomycetaceae/enzymology , Hexosaminidases/chemistry , Models, Chemical , Catalytic Domain , Chitinases/chemistry , Chitosan/chemistry , Chromatography, High Pressure Liquid , Disaccharides/chemistry , Glycosylation , Hexosaminidases/genetics , Hydrolysis , Kinetics , Mutation , Oligosaccharides/chemistry , Saccharomyces/enzymology , Substrate Specificity
4.
Biochem J ; 394(Pt 3): 675-86, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16316314

ABSTRACT

A GlcNase (exo-beta-D-glucosaminidase) was purified from culture supernatant of Amycolatopsis orientalis subsp. orientalis grown in medium with chitosan. The enzyme hydrolysed the terminal GlcN (glucosamine) residues in oligomers of GlcN with transglycosylation observed at late reaction stages. 1H-NMR spectroscopy revealed that the enzyme is a retaining glycoside hydrolase. The GlcNase also behaved as an exochitosanase against high-molecular-mass chitosan with K(m) and kcat values of 0.16 mg/ml and 2832 min(-1). On the basis of partial amino acid sequences, PCR primers were designed and used to amplify a DNA fragment which then allowed the cloning of the GlcNase gene (csxA) associated with an open reading frame of 1032 residues. The GlcNase has been classified as a member of glycoside hydrolase family 2 (GH2). Sequence alignments identified a group of CsxA-related protein sequences forming a distinct GH2 subfamily. Most of them have been annotated in databases as putative beta-mannosidases. Among these, the SAV1223 protein from Streptomyces avermitilis has been purified following gene cloning and expression in a heterologous host and shown to be a GlcNase with no detectable beta-mannosidase activity. In CsxA and all relatives, a serine-aspartate doublet replaces an asparagine residue and a glutamate residue, which were strictly conserved in previously studied GH2 members with beta-galactosidase, beta-glucuronidase or beta-mannosidase activity and shown to be directly involved in various steps of the catalytic mechanism. Alignments of several other GH2 members allowed the identification of yet another putative subfamily, characterized by a novel, serine-glutamate doublet at these positions.


Subject(s)
Actinomycetales/enzymology , Glycoside Hydrolases/classification , Glycoside Hydrolases/metabolism , Actinomycetales/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Conserved Sequence , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Molecular Sequence Data , Multigene Family , Phylogeny , Substrate Specificity
5.
J Steroid Biochem Mol Biol ; 91(4-5): 259-71, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15336703

ABSTRACT

In order to study the effect of phosphorylation on the function of the steroidogenic acute regulatory protein (StAR), 10 putative phosphorylation sites were mutated in the hamster StAR. In pcDNA3.1-StAR transfected COS-1 cells, decreases in basal activity were found for the mutants S55A, S185A and S194A. Substitution of S185 by D or E to mimic phosphorylation resulted in decreased activity for all mutants; we concluded that S185 was not a phosphorylation site and we hypothesized that mutations on S185 created StAR conformational changes resulting in a decrease in its binding affinity for cholesterol. In contrast, the mutation S194D resulted in an increase in StAR activity. We have calculated the relative rate of pregnenolone formation (App. V(max)) in transfected COS-1 cells with wild type (WT) and mutant StAR-pcDNA3.1 under control and (Bu)(2)-cAMP stimulation. The App. V(max) values refer to the rate of cholesterol transported and metabolized by the cytochrome P450scc enzyme present in the inner mitochondrial membrane. The App. V(max) was 1.61 +/- 0.28 for control (Ctr) WT StAR and this value was significantly increased to 4.72 +/- 0.09 for (Bu)(2)-cAMP stimulated preparations. App. V(max) of 5.53 (Ctr) and 4.82 ((Bu)(2)-cAMP) found for S194D StAR preparations were similar to that of the WT StAR stimulated preparations. At equal StAR quantity, an anti-phospho-(S/T) PKA substrate antibody revealed four times more phospho-(S/T) in (Bu)(2)-cAMP than in control preparations. The intensity of phosphorylated bands was decreased for the S55A, S56A and S194A mutants and it was completely abolished for the S55A/S56A/S194A mutant. StAR activity of control and stimulated preparations were diminished by 73 and 72% for the mutant S194A compared to 77 and 83% for the mutant S55A/S56A/S194A. The remaining activity appears to be independent of phosphorylation at PKA sites and could be due to the intrinsic activity of non-phosphorylated StAR or to an artefact due to the pharmacological quantity of StAR expressed in COS-1. In conclusion we have shown that (Bu)(2)-cAMP provokes an augmentation of both the quantity and activity of StAR, and that an enhancement in StAR phosphorylation increases its activity. The increased quantity of StAR upon (Bu)(2)-cAMP stimulation could be due to an augmentation of its mRNA or protein synthesis stability, or both; this is yet to be determined.


Subject(s)
Adrenal Glands/metabolism , Mutation/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Animals , Binding Sites , Bucladesine/pharmacology , COS Cells , Chlorocebus aethiops , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme , Cricetinae , Cyclic AMP-Dependent Protein Kinases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria , Mutagenesis, Site-Directed , Phosphorylation , Pregnenolone/metabolism , Protein Binding , Protein Conformation/drug effects , Transfection
6.
Mol Cell Endocrinol ; 215(1-2): 127-34, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-15026185

ABSTRACT

Post-translational modifications such as phosphorylation and specific proteolysis affect the steroidogenic acute regulatory protein (StAR) activity. We have found that in pcDNA3.1-StAR-transfected COS-1 cells, StAR was phosphorylated on S55, S56 and S194 (Fleury et al., unpublished). In this study, we are comparing the two-dimensional gel electrophoresis (2D-PAGE) characteristics of the WT StAR with those of the S194A and S55A/S56A/S194A-StAR mutants under control and (Bu)(2)-cAMP stimulation, using an anti-StAR antibody and an anti-phospho-(Ser/Thr) PKA substrate antibody. The 2D-PAGE migration pattern of the WT StAR analyzed by immunoblotting with the anti-StAR antibody revealed many StAR species with different pI and different molecular weights. In the (Bu)(2)-cAMP-WT preparations, except for three, all these StAR species were also recognized by the anti-phospho-(Ser/Thr) PKA substrate antibody; in contrast, less phosphorylated species were found in the non-stimulated WT preparations. The two-dimensional (2D) patterns of StAR revealed by the anti-StAR and the anti-phospho-(Ser/Thr) PKA substrate antibodies were modified for the S194A mutant and further modified for the S55A/S56A/S194A mutant. Whereas many species could still be detected by the anti-StAR antibody in the triple mutant S55A/S55A/S194A, none of these could be revealed by the anti-phospho-(Ser/Thr) PKA substrate antibody. Finally we found that, in addition to phosphorylation, the formation of different StAR species was also due to the hydrolysis of the molecule at its N-terminal and to a lesser degree at its C-terminal.


Subject(s)
Adrenal Cortex/metabolism , Mutation/genetics , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Adrenal Cortex/cytology , Adrenal Cortex/drug effects , Animals , Bucladesine/pharmacology , COS Cells , Cricetinae , Electrophoresis, Gel, Two-Dimensional , Immunoblotting , Phosphoproteins/genetics , Phosphorylation
7.
Microsc Res Tech ; 61(3): 288-99, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12768544

ABSTRACT

We studied the effect of the adrenocorticotropin hormone (ACTH) on the expression of the steroidogenic acute regulatory protein (StAR) in vivo in rat and hamster adrenals and also in transfection experiments using COS-1 cells. In vivo, ACTH increased the level of StAR mRNA within 30-60 minutes and also increased the quantity of StAR, but with a 2-3-hour delay. ACTH induced the formation of many acidic StAR species as analyzed by two-dimensional gel electrophoresis and immunoblotting. In the transfection experiments, (Bu)(2)-cAMP also induced the formation of many acidic species for the hamster StAR; in COS-1 cells, StAR is phosphorylated mainly on serine (S) residue(s). When alanine (A) was substituted for serine, S13A, S185A, and S194A mutants had decreased StAR activity compared to wildtype, thus determining the importance of these amino acid residues in StAR action. The full-length WT, N46-truncated StAR lacking its mitochondrial import sequence, and N46-S194A had similar activities, whereas N46-S185A had completely lost its activity. Our results suggest that S194, but not S185, functions in association with the mitochondrial import sequence for the initiation of StAR activation. Further studies showed that S185 is implicated in salt bridge stability, not in StAR phosphorylation, suggesting its importance for StAR folding. Thermodynamic calculations of the hamster StAR homology model based on MLN64 show that StAR can partially unfold to bind cholesterol and serve as a rapid transfer mechanism for eventual translocation into mitochondria. This is supportive of a StAR functioning either outside the mitochondria or in the mitochondrial intermembrane space.


Subject(s)
Adrenocorticotropic Hormone/pharmacology , Phosphoproteins/physiology , Animals , Cholesterol/metabolism , Gene Expression Regulation/drug effects , Humans , Immunoblotting , Phosphoproteins/analysis , Phosphoproteins/genetics , Phosphorylation , RNA, Messenger/analysis , Structure-Activity Relationship , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...