Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Med Virol ; 95(10): e29195, 2023 10.
Article in English | MEDLINE | ID: mdl-37881005

ABSTRACT

Hepatitis B e antigen (HBeAg) loss represents a late stage of chronic hepatitis B virus (HBV) infection associated with a drastic decrease in HBV-DNA, a lower risk of disease progression, and the occurrence of several mutations in the preCore/core region. However, the underlying mechanisms supporting the downregulation of viral replication have yet to be elucidated. In the present study, the analysis of the frequency of subgenotype D1 core protein (HBc) mutations associated with HBeAg status revealed a higher mutation rate in HBeAg-negative sequences compared to HBeAg-positive ones. Particularly, 22 amino acids exhibited a higher frequency of mutation in HBeAg-negative sequences, while the remaining residues showed a high degree of conservation. Subsequently, the assessment of HBc mutants derived from HBeAg-negative patients in viral structure and replicative capacity revealed that HBc mutations have the ability to modulate the subcellular localization of the protein (either when the protein was expressed alone or in the context of viral replication), capsid assembly, and, depending on specific mutation patterns, alter covalently closed circular DNA (cccDNA) recycling and up- or downregulate viral replication. In conclusion, HBc mutations associated with HBeAg-negative status impact on various stages of the HBV life cycle modulating viral replication during the HBeAg-negative stage of infection.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B e Antigens/genetics , Hepatitis B e Antigens/analysis , Mutation , Virus Replication , DNA, Viral/genetics , DNA, Viral/analysis
2.
World J Gastroenterol ; 28(31): 4249-4262, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36159002

ABSTRACT

After more than four decades of hepatitis B virus (HBV) vaccine implementation, its safety and efficacy in preventing HBV infection have been proven and several milestones have been achieved. Most countries have included HBV immunization schedules in their health policies and progress has been made regarding universalization of the first HBV vaccine dose at birth. All of these actions have significantly contributed to reducing both the incidence of HBV infection and its related complications. However, there are still many drawbacks to overcome. The main concerns are the deficient coverage rate of the dose at birth and the large adult population that has not been reached timely by universal immunization. Additionally, the current most widely used second-generation vaccines do not induce protective immunity in 5% to 10% of the population, particularly in people over 40-years-old, obese (body mass index > 25 kg/m2), heavy smokers, and patients undergoing dialysis or infection with human immunodeficiency virus. Recently developed and approved novel vaccine formulations using more potent adjuvants or multiple antigens have shown better performance, particularly in difficult settings. These advances re-launch the expectations of achieving the World Health Organization's objective of completing hepatitis control by 2030.


Subject(s)
Hepatitis B Vaccines , Hepatitis B , Adult , Hepatitis B/epidemiology , Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Immunity , Infant, Newborn , Renal Dialysis
3.
Front Microbiol ; 13: 946703, 2022.
Article in English | MEDLINE | ID: mdl-35966715

ABSTRACT

Hepatitis B virus (HBV) subgenotype F1b infection has been associated with the early occurrence of hepatocellular carcinoma in chronically infected patients from Alaska and Peru. In Argentina, however, despite the high prevalence of subgenotype F1b infection, this relationship has not been described. To unravel the observed differences in the progression of the infection, an in-depth molecular and biological characterization of the subgenotype F1b was performed. Phylogenetic analysis of subgenotype F1b full-length genomes revealed the existence of two highly supported clusters. One of the clusters, designated as gtF1b Basal included sequences mostly from Alaska, Peru and Chile, while the other, called gtF1b Cosmopolitan, contained samples mainly from Argentina and Chile. The clusters were characterized by a differential signature pattern of eight nucleotides distributed throughout the genome. In vitro characterization of representative clones from each cluster revealed major differences in viral RNA levels, virion secretion, antigen expression levels, as well as in the localization of the antigens. Interestingly, a differential regulation in the expression of genes associated with tumorigenesis was also identified. In conclusion, this study provides new insights into the molecular and biological characteristics of the subgenotype F1b clusters and contributes to unravel the different clinical outcomes of subgenotype F1b chronic infections.

4.
Front Microbiol ; 12: 758613, 2021.
Article in English | MEDLINE | ID: mdl-34803982

ABSTRACT

Hepatitis B virus (HBV) inter-host evolution has resulted in genomic diversification reflected in the existence of nine genotypes (A-I) and numerous subgenotypes. There is growing evidence that genotypes influence HBV natural history, clinical outcomes, and treatment response. However, the biological characteristics underlying these differences have not yet been established. By transfecting HuH-7 cells with unit-length constructs of genotypes A2, B2, C1, D1, and F1b, we identified major differences in HBV replicative capacity and antigen expression across genotypes. Genotypes B2 and F1b showed a 2-fold increase in cccDNA levels compared to the other genotypes (p<0.005). Genotype A2 expressed the lowest pgRNA levels, with a 70-fold decrease in relation to the other genotypes (p<0.0001), while genotype B2 showed the lowest Precore RNA levels, with a 100-fold reduction compared to genotype A2 (p<0.0001). The highest intracellular HBV DNA levels were observed for genotype B2 and the lowest for genotypes A2 and C1 (p<0.0001). Regarding antigen expression, genotype F1b secreted the highest HBsAg levels and genotype D1 the lowest (p<0.0001), while genotypes A2 and B2 showed the highest intracellular HBsAg levels (p<0.0001). Interestingly, genotype C1 secreted the highest HBeAg levels, while genotype A2 showed the highest intracellular levels (p<0.0001). Finally, the analysis of the intra/extracellular antigen ratios revealed that most genotypes retained intracellularly 5-20% of the antigens, except the genotype A2 that retained 50% of the total expressed antigens. In conclusion, this study provides new insights into the biological characteristics of HBV genotypes, being the first study to comparatively analyze European (A and D) and Asian (B and C) genotypes with the Latin American (F) genotype. The differences in HBV replication and antigen expression might contribute to understand the differential role of genotypes in pathogenesis.

5.
Viruses ; 11(7)2019 07 18.
Article in English | MEDLINE | ID: mdl-31323763

ABSTRACT

Hepatitis B virus (HBV) is classified into ten genotypes and numerous subgenotypes (sgt). In particular, sgt F1b and sgt F4, native of Latin America, have been associated with differences in clinical and virological characteristics. Hepatitis B virus X protein (HBx) is a multifunctional regulatory protein associated with the modulation of viral transcription and replication. In this work, we analyzed the role of the X gene and the encoded X protein in sgtF1b and sgtF4 replication. Transfection with HBx deficient genomes revealed remarkable differences in the replicative capacity of sgtF1b and sgtF4 mutants. The silencing of HBx increased sgtF1b X(-) transcription and replication by more than 2.5 fold compared to the wild type variant, while it decreased sgtF4 X(-) transcription and replication by more than 3 fold. Trans-complementation of HBx restore sgtF1b and sgtF4 wild type transcription and replication levels. In addition, transfection with chimeric variants, carrying wild type (F1b/XF4 and F4/XF1b) or mutated (F1b/X(-)F4 and F4/X(-)F1b) X gene of one sgt in the backbone of the other sgt, showed that the nucleotide sequence of the X gene, that includes regulatory elements that modulate pgRNA transcription, was responsible for the disparity observed between sgtF1b X(-) and sgtF4 X(-). These results showed that sgtF1b and sgtF4 X gene play a central role in regulating HBV transcription and replication, which eventually lead to a common purpose, to reach wild type replication levels of sgtF1b and sgtF4 viruses.


Subject(s)
Genotype , Hepatitis B virus/physiology , Hepatitis B/virology , Trans-Activators/metabolism , Virus Replication , Amino Acid Sequence , Base Sequence , Cell Line , DNA, Viral , Gene Expression Regulation, Viral , Genome, Viral , Humans , Open Reading Frames , RNA , Trans-Activators/chemistry , Trans-Activators/genetics , Transcription, Genetic , Viral Regulatory and Accessory Proteins
6.
Arch Virol ; 164(2): 447-455, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30417200

ABSTRACT

Hepatitis B virus (HBV) circulates as a collection of genetically related variants that evolve throughout the chronic infection. Those viral variants that have the greatest fitness are fixed. We recently showed different fitness for HBV variants involved in two epidemiological situations. To understand these fitness differences better, we determined the levels of extracellular HBV DNA, the synthesis of HBV DNA intermediates, and the expression of HBeAg and HBsAg in transfection and cotransfection assays. Our results show that for the subgenotype (sgt) D1, which has an 8-nucleotide deletion (sgtD1del) and exhibits lower fitness, the levels of extracellular DNA and intracellular replicative intermediates were much lower than with sgtD1wt or sgtD1mut (G1896A), which had higher fitness. In addition, in the cotransfection assay, sgtD1del inhibited sgtD1mut but not sgtD1wt replication. We also found that sgtF1b, which exhibits higher fitness, produces significantly higher levels of both extracellular DNA and intracellular replicative intermediates than does the lower-fitness sgtF4. These results demonstrate a relationship between fitness and the replicative ability of the HBV genome in the transfection assay. In addition, the data obtained by cotransfecting cells with sgtD1del and sgtD1mut provide new information about the impact of simultaneous replication of two viral variants in the same cell system on HBV replication.


Subject(s)
Coinfection/virology , Hepatitis B virus/classification , Hepatitis B virus/physiology , Hepatitis B/virology , Genotype , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/genetics , Hepatitis B virus/genetics , Humans , Transfection , Virus Replication
7.
PLoS One ; 13(5): e0197109, 2018.
Article in English | MEDLINE | ID: mdl-29738548

ABSTRACT

Hepatitis B virus (HBV) genotypes and mutants have been associated with differences in clinical and virological characteristics. Autophagy is a cellular process that degrades long-lived proteins and damaged organelles. Viruses have evolved mechanisms to alter this process to survive in host cells. In this work, we studied the modulation of autophagy by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. HBV subgenotypes F1b and F4 replication induced accumulation of autophagosomes in hepatoma cells. However, no autophagic protein degradation was observed, indicating a blockage of autophagic flux at later stages. This inhibition of autophagy flux might be due to an impairment of lysosomal acidification in hepatoma cells. Moreover, HBV-mediated autophagy modulation was independent of the viral subgenotypes and enhanced in viruses with BCP and preCore naturally occurring mutations. These results contribute to understand the mechanisms by which different HBV variants contribute to the pathogenesis of HBV infections. In addition, this study is the first to describe the role that two highly prevalent naturally occurring mutations exert on the modulation of HBV-induced autophagy.


Subject(s)
Autophagy/genetics , Genotype , Hepatitis B virus/genetics , DNA, Viral/genetics , Hepatitis B virus/pathogenicity , Hepatocytes/virology , Humans , Lysosomes/genetics , Lysosomes/virology , Mutation , Promoter Regions, Genetic/genetics , Proteolysis , Virus Replication/genetics
8.
Virology ; 513: 160-167, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29096158

ABSTRACT

In the context of pathogenesis of HBV infection, HBV genotypes and mutants have been shown to affect the natural course of chronic infection and treatment outcomes. In this work, we studied the induction of apoptosis by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. Both subgenotypes F1b and F4 HBV genome transfections induced cell death by apoptosis in human hepatocytes. The BCPdm (A1762T/G1764A) and preCore (G1896A) mutants induced higher levels of apoptosis than the wt virus. This increase in apoptosis was not associated with the enhanced viral replication of the variants. HBV-mediated apoptosis was independent of viral subgenotypes, and associated with the modulation of members of the regulatory Bcl-2 family proteins expression in the mitochondrial apoptotic pathway. Finally, the apoptosis induction increase observed for the preCore mutants suggests that HBeAg might have an anti-apoptotic effect in human hepatocytes.


Subject(s)
Apoptosis , Hepatitis B Core Antigens/genetics , Hepatitis B virus/physiology , Hepatocytes/virology , Mutation , Promoter Regions, Genetic , Virus Replication , Cell Line , Hepatitis B virus/genetics , Hepatocytes/physiology , Humans
9.
PLoS One ; 12(5): e0175543, 2017.
Article in English | MEDLINE | ID: mdl-28472081

ABSTRACT

Hepatitis B virus (HBV) has a high mutation rate and exists as a mixture of genetically different but closely related variants. We present a HBV DNA co-transfection fitness assay and use it to evaluate the relative fitness of different HBV variants in two scenarios: seroconversion process and occupation of an ecological niche. In the seroconversion experiment, subgenotype D1 (sgtD1) deletion (1763-1770) had significantly lower fitness comparing with both sgtD1 wild type and sgtD1mut G1896A, while, in the case of occupation of ecological niche experiment, the results showed the same relative fitness between all of the genotype combinations, except F1b-F4. In this case sgtF1b clearly overgrow sgtF4, which is in accordance with the observation that F1b is the most prevalent in the new infections in Argentina. In summary, we present a method aimed to evaluate HBV viral fitness which improve the analysis of the relative frequency of viral variants during the HBV infection process.


Subject(s)
DNA, Viral/genetics , Hepatitis B virus/genetics , Transfection , Cloning, Molecular , Polymerase Chain Reaction
11.
PLoS One ; 11(7): e0159509, 2016.
Article in English | MEDLINE | ID: mdl-27433800

ABSTRACT

Hepatitis B virus (HBV) is a globally distributed human pathogen that leads to both self-limited and chronic infections. At least eight genotypes (A-H) with distinct geographical allocations and phylodynamic behaviors have been described. They differ substantially in many virological and probably some clinical parameters. The aim of this study was to analyze full-length HBV genome sequences from individuals with symptomatic acute HBV infections using phylogenetic and coalescent methods. The phylogenetic analysis resulted in the following subgenotype distribution: F1b (52.7%), A2 (18.2%), F4 (18.2%) and A1, B2, D3 and F2a 1.8% each. These results contrast with those previously reported from chronic infections, where subgenotypes F1b, F4, A2 and genotype D were evenly distributed. This differential distribution might be related to recent internal migrations and/or intrinsic biological features of each viral genotype that could impact on the probability of transmission. The coalescence analysis showed that after a diversification process started in the 80s, the current sequences of subgenotype F1b were grouped in at least four highly supported lineages, whereas subgenotype F4 revealed a more limited diversification pattern with most lineages without offspring in the present. In addition, the genetic characterization of the studied sequences showed that only two of them presented mutations of clinical relevance at S codifyng region and none at the polymerase catalytic domains. Finally, since the acute infections could be an expression of the genotypes currently being transmitted to new hosts, the predominance of subgenotype F1b might have epidemiological, as well as, clinical relevance due to its potential adverse disease outcome among the chronic cases.


Subject(s)
Evolution, Molecular , Hepatitis B Surface Antigens/genetics , Hepatitis B virus/genetics , Hepatitis B/genetics , DNA, Viral/genetics , Genotype , Hepatitis B/virology , Hepatitis B virus/pathogenicity , Humans , Phylogeny , Sequence Analysis, DNA
12.
Infect Genet Evol ; 44: 34-42, 2016 10.
Article in English | MEDLINE | ID: mdl-27321439

ABSTRACT

Hepatitis B virus (HBV) infection is a major public health problem worldwide. The aims of this study were to describe the molecular epidemiology of HBV in the Province of Misiones, Argentina and estimate the phylodynamic of the main groups in a Bayesian coalescent framework. To this end, partial or complete genome sequences were obtained from 52 blood donor candidates. The phylogenetic analysis based on partial sequences of S/P region showed a predominance of genotype D (65.4%), followed by genotype F (30.8%) and genotype A as a minority (3.8%). At subgenotype level, the circulation of subgenotypes D3 (42.3%), D2 (13.5%), F1b (11.5%) and F4 (9.6%) was mainly identified. The Bayesian coalescent analysis of 29 complete genome sequences for the main groups revealed that the subgenotypes D2 and D3 had several introductions to the region, with ancestors dating back from 1921 to 1969 and diversification events until the late '70s. The genotype F in Misiones has a more recent history; subgenotype F4 isolates were intermixed with sequences from Argentina and neighboring countries and only one significant cluster dated back in 1994 was observed. Subgenotype F1b isolates exhibited low genetic distance and formed a closely related monophyletic cluster, suggesting a very recent introduction. In conclusion, the phylogenetic and coalescent analyses showed that the European genotype D has a higher circulation, a longer history of diversification and may be responsible for the largest proportion of chronic HBV infections in the Province of Misiones. Genotype F, especially subgenotype F1b, had a more recent introduction and its diversification in the last 20years might be related to its involvement in new transmission events.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B/epidemiology , Argentina/epidemiology , Bayes Theorem , Genetic Variation , Genotype , Hepatitis B/virology , Hepatitis B virus/pathogenicity , Humans , Molecular Epidemiology/methods , Mutation , Phylogeny , Promoter Regions, Genetic
13.
Infect Genet Evol ; 34: 122-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073681

ABSTRACT

Hepatitis B virus (HBV) is classified into eight main genotypes (A-H) and several subgenotypes. Here, three new genotype F complete genome sequences isolated from patients from Buenos Aires city are reported. The new sequences form a separate monophyletic group from the previously known subgenotype F4 strains. Based on results of phylogenetic, genetic distance and evolutionary analyses, the name F4b is proposed for these isolates and F4a for the formerly known as F4. The identification of new clusters allows deepening the knowledge about the diversification process and evolutionary history of HBV.


Subject(s)
Hepatitis B virus/genetics , Hepatitis B/virology , Cluster Analysis , Consensus Sequence , Genetic Variation , Genotype , Hepatitis B virus/classification , Humans , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA
14.
Virology ; 441(1): 40-8, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23541083

ABSTRACT

The aim of this work was to analyse the influence of overlapping genes on the evolution of hepatitis B virus (HBV). A differential evolutionary behaviour among genetic regions and clinical status was found. Dissimilar levels of conservation of the different protein regions could derive from alternative mechanisms to maintain functionality. We propose that, in overlapping regions, selective constraints on one of the genes could drive the substitution process. This would allow protein conservation in one gene by synonymous substitutions while mechanisms of tolerance to the change operate in the overlapping gene (e.g. usage of amino acids with high-degeneracy codons, differential codon usage and replacement by physicochemically similar amino acids). In addition, differential selection pressure according to the HBeAg status was found in all genes, suggesting that the immune response could be one of the factors that would constrain viral replication by interacting with different HBV proteins during the HBeAg(-) stage.


Subject(s)
Genes, Overlapping , Genes, Viral , Hepatitis B virus/genetics , Evolution, Molecular , Hepatitis B e Antigens/genetics , Hepatitis B e Antigens/immunology , Hepatitis B virus/immunology , Humans , Mutation , Selection, Genetic
15.
J Gen Virol ; 85(Pt 1): 39-46, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14718618

ABSTRACT

Hypervariable region 1 (HVR1) of the hepatitis C virus (HCV) genome was directly sequenced from 12 chronically infected patients who had not responded to interferon (IFN) treatment. Due to the quasispecies nature of HCV circulating genomes, serum samples from four patients showing different evolutionary characteristics were further analysed. Serial samples from each patient were taken before, soon after and 14-23 months after a 6 month IFN treatment. HVR1 from each sample was amplified, cloned and the clones sequenced. For each patient, a phylogenetic analysis of the clones was performed and quasispecies complexity and genetic distances were calculated. The amino acid sequences and predicted antigenic profiles were analysed. The pre-treatment samples of the different patients presented dissimilar genetic quasispecies composition. For three of the patients, we showed that, regardless of the complexity or diversity of the viral populations before treatment, they evolved towards genetic diversification following selective pressure. Once the environment became stable, the entire population tended towards homogeneity. The fourth patient represented a case where different components of the quasispecies coexisted for long periods without replacement. We propose herein that the evolution of HVR1 of E2 is more likely to be directed by selection of clearly different subpopulations (modification of quasispecies equilibrium) than by a continuous mechanism related to the successive accumulation of point mutations. The prevalence of a quasispecies shift mechanism was revealed by the cloning analysis during the follow-up period of the evolutionary process.


Subject(s)
Evolution, Molecular , Hepacivirus/genetics , Hepatitis C, Chronic/virology , Viral Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Antiviral Agents/therapeutic use , Hepacivirus/classification , Hepatitis C, Chronic/drug therapy , Humans , Interferon alpha-2 , Interferon-alpha/therapeutic use , Molecular Sequence Data , Recombinant Proteins , Sequence Analysis, DNA , Treatment Outcome , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...