Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 8(5): 2962-2974, 2018 03.
Article in English | MEDLINE | ID: mdl-29531709

ABSTRACT

Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect-associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.

2.
J Mass Spectrom ; 49(9): 860-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25230183

ABSTRACT

The phenolic composition of grape berries grown in Italy (Cabernet Cortis, Johanniter, Solaris, Phoenix, and Regent) and in Germany (Regent and Phoenix) was analyzed using two complementary LC-MS/MS (Liquid Chromatography - Tandem Quadrupole Mass Spectrometry) methods. These five cultivars belong to fungus-resistant grape varieties (PIWI) and little is known about their phenolic profile, although phenolics such as phytoalexins have been recognized, playing a key role in the resistance mechanism. A triple quadruple mass spectrometer detector was used for both identification and quantification, and analytical tools from untargeted metabolomics were applied to check and control the quality of the results. Specifically, biological, technical, and instrumental replications were included in order to study the variability at different levels. The results allowed tuning of the sampling protocol and provided a rich phenolic metabolite profile for the aforementioned PIWI varieties, as compared with Vitis vinifera cultivars, especially in the class of stilbenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...