Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Comput Chem ; 34(12): 1060-70, 2013 May 05.
Article in English | MEDLINE | ID: mdl-23319180

ABSTRACT

A detailed description of the implementation of the effective fragment potential (EFP) method in the Q-CHEM electronic structure package is presented. The Q-CHEM implementation interfaces EFP with standard quantum mechanical (QM) methods such as Hartree-Fock, density functional theory, perturbation theory, and coupled-cluster methods, as well as with methods for electronically excited and open-shell species, for example, configuration interaction, time-dependent density functional theory, and equation-of-motion coupled-cluster models. In addition to the QM/EFP functionality, a "fragment-only" feature is also available (when the system is described by effective fragments only). To aid further developments of the EFP methodology, a detailed description of the C++ classes and EFP module's workflow is presented. The EFP input structure and EFP job options are described. To assist setting up and performing EFP calculations, a collection of Perl service scripts is provided. The precomputed EFP parameters for standard fragments such as common solvents are stored in Q-CHEM's auxiliary library; they can be easily invoked, similar to specifying standard basis sets. The instructions for generating user-defined EFP parameters are given. Fragments positions can be specified by their center of mass coordinates and Euler angles. The interface with the IQMOL and WEBMO software is also described.


Subject(s)
Quantum Theory , Software , Solvents/chemistry
3.
J Chem Theory Comput ; 8(8): 2835-43, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-26592124

ABSTRACT

Noncovalent interactions play an important role in the stabilization of biological molecules. The effective fragment potential (EFP) is a computationally inexpensive ab initio-based method for modeling intermolecular interactions in noncovalently bound systems. The accuracy of EFP is benchmarked against the S22 and S66 data sets for noncovalent interactions [Jurecka, P.; Sponer, J.; Cerný, J.; Hobza, P. Phys. Chem. Chem. Phys.2006, 8, 1985; Rezác, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput.2011, 7, 2427]. The mean unsigned error (MUE) of EFP interaction energies with respect to coupled-cluster singles, doubles, and perturbative triples in the complete basis set limit [CCSD(T)/CBS] is 0.9 and 0.6 kcal/mol for S22 and S66, respectively, which is similar to the MUE of MP2 and SCS-MP2 for the same data sets, but with a greatly reduced computational expense. Moreover, EFP outperforms classical force fields and popular DFT functionals such as B3LYP and PBE, while newer dispersion-corrected functionals provide a more accurate description of noncovalent interactions. Comparison of EFP energy components with the symmetry-adapted perturbation theory (SAPT) energies for the S22 data set shows that the main source of errors in EFP comes from Coulomb and polarization terms and provides a valuable benchmark for further improvements in the accuracy of EFP and force fields in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...