Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39238094

ABSTRACT

BACKGROUND: Polytrauma results in systemic inflammation and increased circulating fibrinogen, which increases the risk of microvascular and macrovascular thrombosis that contributes to secondary organ damage and venous thromboembolism (VTE). There are no clinically approved agents to prevent hyperfibrinogenemia after polytrauma. We hypothesized that preventing the increase in fibrinogen levels after polytrauma would suppress thrombosis. METHODS: Small-interfering ribonucleic acid (siRNA) against fibrinogen was encapsulated in lipid nanoparticles (siFibrinogen). Mice underwent a model of polytrauma and were then given varying doses of siFibrinogen, control siRNA, or no treatment. Fibrinogen was measured for 1 week via enxyme-linked immunosorbent assay (ELISA). To model postinjury VTE, the inferior vena cava was ligated 2 days after polytrauma in a portion of the mice. Thrombus weight was measured 48 hours after the inferior vena cava was ligated. RESULTS: Treatment with siFibrinogen prevented hyperfibrinogenemia after trauma without exacerbating the hypofibrinogenemic state that occurs in the acute injury period (1 hour). In treated groups, fibrinogen was significantly lower from 6 hours postinjury through the 7-day monitoring period. Maximal fibrinogen reduction was observed at 72 hours. Here, mice that received 2.0 mg/kg of siFibrinogen had 1% of normal values relative to untreated mice, and mice that received 1.0 or 0.5 mg/kg had 4%. Mice treated with siFibrinogen that underwent the postinjury VTE model had significantly reduced thrombus weight compared with control siRNA-treated animals. More notably, among all siFibrinogen treated mice, 12 of 18 were completely protected from thrombosis, compared with 0 of 9 displaying protection in the control group. CONCLUSION: The rise of fibrinogen and the size of thrombi after polytrauma can be mitigated via the administration of siRNA against fibrinogen. siFibrinogen represents a promising novel target for VTE prophylaxis posttrauma.

2.
J Thromb Haemost ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122189

ABSTRACT

BACKGROUND: Protease-activated receptor-1 (PAR1) has emerged as an important link between coagulation and the complications of obesity including metabolic dysfunction-associated steatotic liver disease (MASLD). PAR1 is expressed by various cells and cleaved by different proteases to generate unique tethered agonists that activate distinct signaling pathways. Mice expressing PAR1 with an R41Q mutation have disabled canonical thrombin-mediated signaling, whereas R46Q mice express PAR1 resistant to noncanonical signaling by activated protein C. METHODS: Mice with whole body and hepatocyte-selective PAR1 deficiency as well as PAR1 R41Q and R46Q mice were fed a high-fat diet (HFD) to induce MASLD. RESULTS: HFD-fed R41Q mice displayed reduced hepatic steatosis and liver/body weight ratio. In contrast, HFD-fed R46Q mice displayed increased relative liver weight and hepatic steatosis alongside increased serum alanine aminotransferase activity. Surprisingly, despite the distinct impact of PAR1 mutations on steatosis, selective deletion of PAR1 in hepatocytes had no impact. To evaluate a viable PAR1-targeted approach, mice with HFD-induced obesity were treated with the allosteric PAR1 modulator NRD-21, which inhibits canonical PAR1 inflammatory signaling but promotes PAR1 protective, noncanonical anti-inflammatory signaling. NRD-21 treatment reduced plasma tumor necrosis factor-alpha, serum alanine aminotransferase activity, hepatic steatosis, and insulin resistance (Homeostatic Model Assessment for Insulin Resistance) but increased plasma active glucagon-like peptide-1. CONCLUSION: The results suggest that nonhepatocellular canonical PAR1 cleavage drives MASLD in obese mice and provide translational proof-of-concept that selective pharmacologic modulation of PAR1 yields multiple metabolic benefits in experimental obesity.

3.
Blood Adv ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116293

ABSTRACT

Platelet factor (F)XIII-A is a major cytoplasmic protein (~3% of total) representing ~50% of total circulating FXIII. However, mobilization of FXIII-A during platelet activation is not well defined. To determine mechanisms mediating the retention versus release of platelet FXIII-A, platelets from healthy humans and mice (F13a1-/-, Fga-/-, Plg-/-, Stim1fl/fl, Pf4-Cre and respective controls) were stimulated with thrombin, convulxin+thrombin, or calcium ionophore (A23187), in the absence or presence of inhibitors of transglutaminase activity, mRNA translation, microtubule rearrangement, calpain, and Rho GTPase. Platelet releasates and pellets were separated by (ultra)centrifugation. FXIII-A was detected by immunoblotting and immunofluorescence microscopy. Even following strong dual agonist (convulxin+thrombin) stimulation of human platelets, >80% platelet FXIII-A remained associated with the platelet pellet. In contrast, essentially all tissue factor pathway inhibitor, another cytoplasmic protein in platelets, was released to the supernatant. Pellet-associated FXIII-A was not due to de novo synthesis via platelet F13A1 mRNA. The proportion of platelet FXIII-A retained by, versus released from, activated platelets was partly dependent on STIM1 signaling, microtubule rearrangement, calpain, and RhoA activation, but did not depend on the presence of fibrinogen or plasminogen. Immunofluorescence microscopy confirmed the presence of considerable FXIII-A within the activated platelets. Whereas released FXIII-A was cleaved to FXIII-A* and could be degraded by plasmin, platelet-associated FXIII-A remained uncleaved. Retention of substantial platelet-derived FXIII-A by activated platelets, and its reduced susceptibility to thrombin- and plasmin-mediated proteolysis, suggests platelet FXIII-A is a protected pool with biological role(s) that differs from plasma FXIII.

4.
bioRxiv ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39071295

ABSTRACT

Urinary catheterization causes bladder damage, predisposing hosts to catheter-associated urinary tract infections (CAUTIs). CAUTI pathogenesis is mediated by bladder damage-induced inflammation, resulting in accumulation and deposition of the blood-clotting protein fibrinogen (Fg) and its matrix form fibrin, which are exploited by uropathogens as biofilm platforms to establish infection. Catheter-induced inflammation also results in robust immune cell recruitment, including macrophages (Mϕs). A fundamental knowledge gap is understanding the mechanisms by which the catheterized-bladder environment suppresses the Mϕ antimicrobial response, allowing uropathogen persistence. Here, we found that Fg and fibrin differentially modulate M1 and M2 Mϕ polarization, respectively. We unveiled that fibrin accumulation in catheterized mice induced an anti-inflammatory M2-like Mϕ phenotype, correlating with pathogen persistence. Even GM-CSF treatment of wildtype mice to promote M1 polarization was not sufficient to reduce bacterial burden and dissemination, indicating that the catheterized-bladder environment provides mixed signals, dysregulating Mϕ polarization, hindering its antimicrobial response against uropathogens.

5.
J Biomed Mater Res A ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874363

ABSTRACT

Staphylococcus aureus skin and soft tissue infection is a common ailment placing a large burden upon global healthcare infrastructure. These bacteria are growing increasingly recalcitrant to frontline antimicrobial therapeutics like vancomycin due to the prevalence of variant populations such as methicillin-resistant and vancomycin-resistant strains, and there is currently a dearth of novel antibiotics in production. Additionally, S. aureus has the capacity to hijack the host clotting machinery to generate fibrin-based biofilms that confer protection from host antimicrobial mechanisms and antibiotic-based therapies, enabling immune system evasion and significantly reducing antimicrobial efficacy. Emphasis is being placed on improving the effectiveness of therapeutics that are already commercially available through various means. Fibrin-based nanoparticles (FBNs) were developed and found to interact with S. aureus through the clumping factor A (ClfA) fibrinogen receptor and directly integrate into the biofilm matrix. FBNs loaded with antimicrobials such as vancomycin enabled a targeted and sustained release of antibiotic that increased drug contact time and reduced the therapeutic dose required for eradicating the bacteria, both in vitro and in vivo. Collectively, these findings suggest that FBN-antibiotic delivery may be a novel and potent therapeutic tool for the treatment of S. aureus biofilm infections.

6.
Blood ; 144(10): 1116-1126, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38820498

ABSTRACT

ABSTRACT: Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor or F12-/-mice compared with controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid. Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug-EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D-/-mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.


Subject(s)
Blood Platelets , Fibrin , Hemostasis , Animals , Blood Platelets/metabolism , Mice , Fibrin/metabolism , Intravital Microscopy/methods , Phosphatidylserines/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Mice, Knockout , Blood Coagulation , Thromboplastin/metabolism , Thromboplastin/genetics
7.
Res Pract Thromb Haemost ; 8(3): 102395, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38699410

ABSTRACT

The University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology. In keeping with the tradition of the conference, we expect novel cross-disciplinary collaborations to result from bringing together fundamental scientists and physician-scientists from different backgrounds and perspectives. The aim of these collaborations is to springboard the next generation of important advances in the field. This year's program was designed to discuss Coagulation and Platelet Biology at the Intersection of Health and Disease. The goal is to develop a better understanding of the pathophysiologic mechanisms leading to hemostatic and thrombotic disorders as this understanding is critical for the continued development of safe and efficacious therapeutics. Included in this review article are illustrated capsules provided by our speakers that highlight the main conclusions of the invited talks.

8.
Nat Commun ; 15(1): 2704, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538626

ABSTRACT

Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.


Subject(s)
Cross Infection , Sepsis , Urinary Tract Infections , Animals , Mice , Humans , Catheters , Enterococcus faecalis/genetics , Fibrin
9.
Sci Transl Med ; 16(735): eadh0027, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381848

ABSTRACT

Antifibrinolytic drugs are used extensively for on-demand treatment of severe acute bleeding. Controlling fibrinolysis may also be an effective strategy to prevent or lessen chronic recurring bleeding in bleeding disorders such as hemophilia A (HA), but current antifibrinolytics have unfavorable pharmacokinetic profiles. Here, we developed a long-lasting antifibrinolytic using small interfering RNA (siRNA) targeting plasminogen packaged in clinically used lipid nanoparticles (LNPs) and tested it to determine whether reducing plasmin activity in animal models of HA could decrease bleeding frequency and severity. Treatment with the siRNA-carrying LNPs reduced circulating plasminogen and suppressed fibrinolysis in wild-type and HA mice and dogs. In HA mice, hemostatic efficacy depended on the injury model; plasminogen knockdown improved hemostasis after a saphenous vein injury but not tail vein transection injury, suggesting that saphenous vein injury is a murine bleeding model sensitive to the contribution of fibrinolysis. In dogs with HA, LNPs carrying siRNA targeting plasminogen were as effective at stabilizing clots as tranexamic acid, a clinical antifibrinolytic, and in a pilot study of two dogs with HA, the incidence of spontaneous or excess bleeding was reduced during 4 months of prolonged knockdown. Collectively, these data demonstrate that long-acting antifibrinolytic therapy can be achieved and that it provides hemostatic benefit in animal models of HA.


Subject(s)
Antifibrinolytic Agents , Hemophilia A , Hemostatics , Liposomes , Nanoparticles , Dogs , Animals , Mice , Fibrinolysis/genetics , Antifibrinolytic Agents/pharmacology , Plasminogen/pharmacology , Hemophilia A/drug therapy , RNA, Small Interfering , Pilot Projects , Hemorrhage/drug therapy , Hemostatics/pharmacology
10.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37971174

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Fibrinolysin , Pancreatic Neoplasms/pathology , Plasminogen
11.
Blood ; 143(2): 105-117, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37832029

ABSTRACT

ABSTRACT: Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga-/-) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen-platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga-/- mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.


Subject(s)
Hemostatics , Thrombosis , Venous Thrombosis , Animals , Mice , Fibrinogen/metabolism , Hemostasis , Venous Thrombosis/genetics , Venous Thrombosis/metabolism , Thrombosis/metabolism , Blood Platelets/metabolism
12.
Res Sq ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37790429

ABSTRACT

Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat due to multi-drug resistance development among the CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, we found that E. faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.

13.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662350

ABSTRACT

Interplay between platelets, coagulation/fibrinolytic factors, and endothelial cells (ECs) is necessary for effective hemostatic plug formation. This study describes a novel four-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components with high spatiotemporal resolution. Fibrin accumulation following laser-induced endothelial ablation was observed at the EC-platelet plug interface, controlled by the antagonistic balance between fibrin generation and breakdown. Phosphatidylserine (PS) was first detected in close physical proximity to the fibrin ring, followed by exposure across the endothelium. Impaired PS exposure in cyclophilinD -/- mice resulted in a significant reduction in fibrin accumulation. Adoptive transfer and inhibitor studies demonstrated a key role for platelets, but not ECs, in fibrin generation during hemostatic plug formation. Inhibition of fibrinolysis with tranexamic acid (TXA) led to increased fibrin accumulation in WT mice, but not in cyclophilinD -/- mice or WT mice treated with antiplatelet drugs. These studies implicate platelets as the functionally dominant procoagulant surface during hemostatic plug formation. In addition, they suggest that impaired fibrin formation due to reduced platelet procoagulant activity is not reversed by TXA treatment.

14.
Nat Commun ; 14(1): 6066, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770427

ABSTRACT

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Subject(s)
Biological Products , Brain Neoplasms , Glioma , Multiparametric Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Homozygote , Sequence Deletion , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Magnetic Resonance Imaging/methods
16.
J Thromb Haemost ; 21(8): 2236-2247, 2023 08.
Article in English | MEDLINE | ID: mdl-37068592

ABSTRACT

BACKGROUND: Thromboelastography (TEG) is used for real-time determination of hemostatic status in patients with acute risk of bleeding. Thrombin is thought to drive clotting in TEG through generation of polymerized fibrin and activation of platelets through protease-activated receptors (PARs). However, the specific role of platelet agonist receptors and signaling in TEG has not been reported. OBJECTIVES: Here, we investigated the specific receptors and signaling pathways required for platelet function in TEG using genetic and pharmacologic inhibition of platelet proteins in mouse and human blood samples. METHODS: Clotting parameters (R time, α-angle [α], and maximum amplitude [MA]), were determined in recalcified, kaolin-triggered citrated blood samples using a TEG 5000 analyzer. RESULTS: We confirmed the requirement of platelets, platelet contraction, and αIIbß3 integrin function for normal α and MA. Loss of the integrin adaptor Talin1 in megakaryocytes/platelets (Talin1mKO) also reduced α and MA, but only minimal defects were observed in samples from mice lacking Rap1 GTPase signaling. PAR4mKO samples showed impaired α but normal MA. However, impaired TEG traces similar to those in platelet-depleted samples were observed with samples from PAR4mKO mice depleted of glycoprotein VI on platelets or with addition of a Syk inhibitor. We reproduced these results in human blood with combined inhibition of PAR1, PAR4, and Syk. CONCLUSION: Our results demonstrate that standard TEG is not sensitive to platelet signaling pathways critical for integrin inside-out activation and platelet hemostatic function. Furthermore, we provide the first evidence that PARs and glycoprotein VI play redundant roles in platelet-mediated clot contraction in TEG.


Subject(s)
Blood Platelets , Hemostatics , Animals , Humans , Mice , Blood Platelets/metabolism , Glycoproteins/metabolism , Integrins/metabolism , Receptors, Proteinase-Activated/metabolism , Receptors, Thrombin/genetics , Receptors, Thrombin/metabolism , Thrombelastography/methods
17.
J Thromb Haemost ; 21(8): 2175-2188, 2023 08.
Article in English | MEDLINE | ID: mdl-37062522

ABSTRACT

BACKGROUND: Hepatic deposition of cross-linked fibrin(ogen) occurs alongside platelet accumulation as a hallmark of acetaminophen (APAP)-induced liver injury. OBJECTIVES: We sought to define the precise role of the fibrinogen γ-chain C-terminal integrin αIIbß3 binding domain in APAP-induced liver injury. METHODS: Mice expressing mutant fibrinogen incapable of engaging integrin αIIbß3 due to a C-terminal fibrinogen γ-chain truncation (mutant fibrinogen-γΔ5 [FibγΔ5] mice) and wild-type mice were challenged with APAP (300 mg/kg, intraperitoneally). RESULTS: We observed an altered pattern of fibrin(ogen) deposition in the livers of APAP-challenged FibγΔ5 mice. This led to the unexpected discovery that fibrinogen γ-chain cross-linking was altered in the livers of APAP-challenged FibγΔ5 mice compared with that in wild-type mice, including absence of γ-γ dimer and accumulation of larger molecular weight cross-linked γ-chain complexes. This finding was not unique to the injured liver because activation of coagulation did not produce γ-γ dimer in plasma from FibγΔ5 mice or purified FibγΔ5 fibrinogen. Sanger sequencing predicted that the fibrinogen-γΔ5 γ-polypeptide would terminate at lysine residue 406, but liquid chromatography tandem mass spectrometry analysis revealed that this critical lysine residue was absent in purified fibrinogen-γΔ5 protein. Interestingly, hepatic deposition of this uniquely aberrantly cross-linked fibrin(ogen) in FibγΔ5 mice was associated with exacerbated hepatic injury, an effect not recapitulated by pharmacologic inhibition of integrin αIIbß3. CONCLUSION: The results indicate that fibrinogen-γΔ5 lacks critical residues essential to form γ-γ dimer in response to thrombin and suggest that hepatic accumulation of abnormally cross-linked fibrin(ogen) can exacerbate hepatic injury.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury, Chronic , Animals , Mice , Fibrin/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Integrins , Lysine
18.
J Thromb Haemost ; 21(8): 2277-2290, 2023 08.
Article in English | MEDLINE | ID: mdl-37001817

ABSTRACT

BACKGROUND: Staphylococcus aureus is a common gram-positive bacterium that is the causative agent for several human diseases, including sepsis. A key virulence mechanism is pathogen binding to host fibrinogen through the C-terminal region of the γ-chain. Previous work demonstrated that FggΔ5 mice expressing mutant fibrinogen γΔ5 lacking a S. aureus binding motif had significantly improved survival following S. aureus septicemia. Fibrinogen γ' is a human splice variant that represents about 10% to 15% of the total fibrinogen in plasma and circulates as a fibrinogen γ'-γ heterodimer (phFibγ'-γ). The fibrinogen γ'-chain is also expected to lack S. aureus binding function. OBJECTIVE: Determine if human fibrinogen γ'-γ confers host protection during S. aureus septicemia. METHODS: Analyses of survival and the host response following S. aureus septicemia challenge in FggΔ5 mice and mice reconstituted with purified phFibγ'-γ or phFibγ-γ. RESULTS: Reconstitution of fibrinogen-deficient or wildtype mice with purified phFibγ'-γ prior to infection provided a significant prolongation in host survival relative to mice reconstituted with purified phFibγ-γ, which was superior to that observed with heterozygous FggΔ5 mice. Improved survival could not be accounted for by quantitative differences in fibrinogen-dependent adhesion or clumping, but phFibγ'-γ-containing mixtures generated notably smaller bacterial aggregates. Importantly, administration of phFibγ'-γ after infection also provided a therapeutic benefit by prolonging host survival relative to administration of phFibγ-γ. CONCLUSION: These findings provide the proof-of-concept that changing the ratio of naturally occurring fibrinogen variants in blood could offer significant therapeutic potential against bacterial infection and potentially other diseases.


Subject(s)
Bacteremia , Fibrinogens, Abnormal , Sepsis , Staphylococcal Infections , Humans , Mice , Animals , Staphylococcus aureus/metabolism , Fibrinogen/metabolism
19.
J Thromb Haemost ; 21(3): 522-533, 2023 03.
Article in English | MEDLINE | ID: mdl-36696182

ABSTRACT

BACKGROUND: Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES: Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS: Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS: HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS: We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.


Subject(s)
Fibrinogen , Hemostatics , Humans , Fibrinogen/metabolism , Interleukin-6/metabolism , Gene Expression , Hepatocytes/metabolism , Hep G2 Cells
20.
J Thromb Haemost ; 20(12): 2873-2886, 2022 12.
Article in English | MEDLINE | ID: mdl-36111375

ABSTRACT

BACKGROUND: Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM ß2 . OBJECTIVES: An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS: Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM ß2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS: Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM ß2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.


Subject(s)
Afibrinogenemia , Diabetes Mellitus, Type 2 , Hemostatics , Non-alcoholic Fatty Liver Disease , Mice , Animals , Fibrin/metabolism , Polymers , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/prevention & control , Fibrinogen/genetics , Fibrinogen/metabolism , Factor XIII/metabolism , Obesity , Diet
SELECTION OF CITATIONS
SEARCH DETAIL