Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Phys Rev Lett ; 117(15): 157201, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768324

ABSTRACT

The heavy fermion compound URu_{2}Si_{2} continues to attract great interest due to the unidentified hidden order it develops below 17.5 K. The unique Ising character of the spin fluctuations and low-temperature quasiparticles is well established. We present detailed measurements of the angular anisotropy of the nonlinear magnetization that reveal a cos^{4}θ Ising anisotropy both at and above the ordering transition. With Landau theory, we show this implies a strongly Ising character of the itinerant hidden order parameter.

3.
Phys Rev Lett ; 116(19): 196401, 2016 May 13.
Article in English | MEDLINE | ID: mdl-27232028

ABSTRACT

We use angle resolved photoemission spectroscopy, Raman spectroscopy, low energy electron diffraction, and x-ray scattering to reveal an unusual electronically mediated charge density wave (CDW) in K_{0.9}Mo_{6}O_{17}. Not only does K_{0.9}Mo_{6}O_{17} lack signatures of electron-phonon coupling, but it also hosts an extraordinary surface CDW, with T_{S_CDW}=220 K nearly twice that of the bulk CDW, T_{B_CDW}=115 K. While the bulk CDW has a BCS-like gap of 12 meV, the surface gap is 10 times larger and well in the strong coupling regime. Strong coupling behavior combined with the absence of signatures of strong electron-phonon coupling indicates that the CDW is likely mediated by electronic interactions enhanced by low dimensionality.

4.
Phys Rev Lett ; 114(2): 027002, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25635559

ABSTRACT

The recent observation of fully gapped superconductivity in Yb doped CeCoIn_{5} poses a paradox, for the disappearance of nodes suggests that they are accidental, yet d-wave symmetry with protected nodes is well established by experiment. Here, we show that composite pairing provides a natural resolution: in this scenario, Yb doping drives a Lifshitz transition of the nodal Fermi surface, forming a fully gapped d-wave molecular superfluid of composite pairs. The T^{4} dependence of the penetration depth associated with the sound mode of this condensate is in accordance with observation.

5.
Phys Rev Lett ; 111(21): 217201, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313520

ABSTRACT

We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly coupled lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2/3 of the spins at low temperatures suggests that its triangular lattice decouples into an emergent honeycomb lattice weakly coupled to the remaining spins, and we suggest several ways to test this proposal. We show that these orphan spins act to stabilize the spin liquid in the J1-J2 honeycomb model and also discuss a possible 3D analogue, Ba2MoYO6 that may form a "depleted fcc lattice."

6.
Nature ; 493(7434): 621-6, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23364741

ABSTRACT

The development of collective long-range order by means of phase transitions occurs by the spontaneous breaking of fundamental symmetries. Magnetism is a consequence of broken time-reversal symmetry, whereas superfluidity results from broken gauge invariance. The broken symmetry that develops below 17.5 kelvin in the heavy-fermion compound URu(2)Si(2) has long eluded such identification. Here we show that the recent observation of Ising quasiparticles in URu(2)Si(2) results from a spinor order parameter that breaks double time-reversal symmetry, mixing states of integer and half-integer spin. Such 'hastatic' order hybridizes uranium-atom conduction electrons with Ising 5f(2) states to produce Ising quasiparticles; it accounts for the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. Hastatic order predicts a tiny transverse moment in the conduction-electron 'sea', a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant, energy-dependent nematicity in the tunnelling density of states.

7.
Phys Rev Lett ; 105(24): 246404, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21231540

ABSTRACT

We consider the internal structure of a d-wave heavy-fermion superconducting condensate, showing that it necessarily contains two components condensed in tandem: pairs of quasiparticles on neighboring sites and composite pairs consisting of two electrons bound to a single local moment. These two components draw upon the antiferromagnetic and Kondo interactions to cooperatively enhance the superconducting transition temperature. This tandem condensate is electrostatically active, with an electric quadrupole moment predicted to lead to a superconducting shift in the nuclear quadrupole resonance frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...