Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 12(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352920

ABSTRACT

STUDY DESIGN: A double-blinded, randomized controlled trial. BACKGROUND: Surgery is effective in reducing pain intensity in patients with cervical disc disease. However, functional measurements demonstrated that the results have been not satisfactory enough. Thus, rehabilitation programs combined with the supplementation of vitamin D could play an essential role. METHODS: The study recruited 30 patients, aged 20 to 70 years, selected for anterior cervical interbody fusion (ACIF). The patients were randomly divided into the placebo (Pl) and vitamin D (3200 IU D3/day) supplemented groups. The functional tests limits of stability (LOS), risk of falls (RFT), postural stability (PST), Romberg test, and foot pressure distribution were performed before supplementation (BS-week 0), five weeks after supplementation (AS-week 5), four weeks after surgery (BSVR-week 9), and 10 weeks after supervising rehabilitation (ASVR-week 19). RESULTS: The concentration of 25(OH)D3 in the serum, after five weeks of supplementation, was significantly increased, while the Pl group maintained the same. The RFT was significantly reduced after five weeks of vitamin D supplementation. Moreover, a further significant decrease was observed following rehabilitation. In the Pl group, no changes in the RFT were observed. The overall postural stability index (OSI), LOS, and the outcomes of the Romberg test significantly improved in both groups; however, the effects on the OSI were more pronounced in the D3 group at the end of the rehabilitation program. CONCLUSIONS: Our data suggest that vitamin D supplementation positively affected the rehabilitation program in patients implemented four weeks after ACIF by reducing the risk of falls and improving postural stability.


Subject(s)
Cervical Vertebrae/surgery , Postural Balance/physiology , Spinal Fusion/rehabilitation , Vitamin D/administration & dosage , Vitamins/administration & dosage , Accidental Falls/prevention & control , Adult , Aged , Analysis of Variance , Calcifediol/blood , Double-Blind Method , Female , Foot , Humans , Male , Middle Aged , Placebos/administration & dosage , Pressure , Spinal Fusion/methods , Time Factors , Young Adult
2.
Nutrients ; 11(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547377

ABSTRACT

BACKGROUND: The introduction of early rehabilitation exercise is the foundation of treatment post-Posterior lumbar interbody fusion (PLIF) surgery, and the search for additional sources of reinforcement physiotherapy seems to be very important. METHODS: The patients were randomly divided into the vitamin D3 (n = 15; D3) supplemented group and received 3200 IU per day for five weeks before surgery and the placebo group (n = 18; Pl) received vegetable oil during the same time. The patients began the supervisor rehabilitation program four weeks after surgery. RESULTS: The limits of stability (LOS) were significantly improved in the D3 group after 5 and 14 weeks (p < 0.05), while in the Pl group, progress was only observed after 14 weeks (p < 0.05). The LOS were also higher in the D3 group than in the Pl group after five weeks of supervised rehabilitation (p < 0.05). In the postural stability (PST) test, significant progress was observed in the D3 group after 14 weeks (p < 0.02). In addition, neither rehabilitation nor supplementation had significant effects on the risk of falls (RFT). CONCLUSIONS: Vitamin D supplementation seems to ameliorate the effects of an early postoperative rehabilitation program implemented four weeks after posterior lumbar interbody fusion. Early physiotherapy treatment after PLIF surgery combined with vitamin D supplementation appears to be a very important combination with regard to the patients' recovery process.


Subject(s)
Cholecalciferol/administration & dosage , Dietary Supplements , Exercise Therapy/methods , Postural Balance , Spinal Fusion/rehabilitation , Accidental Falls/prevention & control , Adult , Aged , Female , Humans , Lumbar Vertebrae/surgery , Male , Middle Aged , Postoperative Complications/prevention & control , Postoperative Period , Recovery of Function , Treatment Outcome , Young Adult
3.
PLoS One ; 13(2): e0192781, 2018.
Article in English | MEDLINE | ID: mdl-29432445

ABSTRACT

BACKGROUND: It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. AIM: The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. MATERIAL AND METHODS: 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were measures in erythrocyte lysates. RESULTS: Allopurinol reduced oxidative stress which was the result of hypoxia/hyperoxia, as shown by decreased 8-isoprostane plasma concentration. XO inhibition did not markedly influence HRV parameters in standard normoxia. However, during hypoxia, as well as hyperoxia, allopurinol administration resulted in a significant increase of autonomic control upon the heart as shown by increased SDNN and TSP, with an increased vagal contribution (increased rMSSD and HF), whereas sympathovagal indexes (LF/HF, SDNN/rMSSD) remained unchanged. CONCLUSIONS: Observed regulatory effects of XO inhibition did not confirm preliminary hypothesis which suggested that an antioxidant such as allopurinol might activate chemoreflex resulting in augmented sympathetic discharge to the heart. The HRV regulatory profile of XO inhibition observed during hypoxia as well as post-hypoxic hyperoxia corresponds to reported reduced risk of sudden cardiovascular events. Therefore our data provide a new argument for therapeutical use of allopurinol in hypoxic conditions.


Subject(s)
Allopurinol/pharmacology , Heart Rate/drug effects , Hyperoxia/metabolism , Hypoxia/metabolism , Xanthine Oxidase/antagonists & inhibitors , Animals , Male , Rats , Rats, Wistar
4.
J Cachexia Sarcopenia Muscle ; 9(3): 557-569, 2018 06.
Article in English | MEDLINE | ID: mdl-29380557

ABSTRACT

BACKGROUND: Recently, skeletal muscle atrophy, impairment of iron metabolism, and insulin signalling have been reported in rats suffering from amyotrophic lateral sclerosis (ALS). However, the interrelationship between these changes has not been studied. We hypothesize that an impaired Akt-FOXO3a signalling pathway triggers changes in the iron metabolism in the muscles of transgenic animals. METHODS: In the present study, we used transgenic rats bearing the G93A hmSOD1 gene and their non-transgenic littermates. The study was performed on the muscles taken from animals at three different stages of the disease: asymptomatic (ALS I), the onset of the disease (ALS II), and the terminal stage of the disease (ALS III). In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines stably transfected with pcDNA3.1, SOD1 WT and SOD1 G93A, or FOXO3a TM-ER. RESULTS: A significant decrease in P-Akt level and changes in iron metabolism were observed even in the group of ALS I animals. This was accompanied by an increase in the active form of FOXO3a, up-regulation of atrogin-1, and catalase. However, significant muscle atrophy was observed in ALS II animals. An increase in ferritin L and H was accompanied by a rise in PCBP1 and APP protein levels. In SH-SY5Y cells stably expressing SOD1 or SOD1 G93A, we observed elevated levels of ferritin L and H and non-haem iron. Interestingly, insulin treatment significantly down-regulated ferritin L and H proteins in the cell. Conversely, cells transfected with small interfering RNA against Akt 1, 2, 3, respectively, showed a significant increase in the ferritin and FOXO3a levels. In order to assess the role of FOXO3a in the ferritin expression, we constructed a line of SH-SY5Y cells that expressed a fusion protein made of FOXO3a fused at the C-terminus with the ligand-binding domain of the oestrogen receptor (TM-ER) being activated by 4-hydroxytamoxifen. Treatment of the cells with 4-hydroxytamoxifen significantly up-regulated ferritin L and H proteins level. CONCLUSIONS: Our data suggest that impairment of insulin signalling and iron metabolism in the skeletal muscle precedes muscle atrophy and is mediated by changes in Akt/FOXO3a signalling pathways.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Forkhead Box Protein O3/metabolism , Iron/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Line , Disease Models, Animal , Humans , Insulin/metabolism , Male , Mice , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Mutation , Rats, Sprague-Dawley , Rats, Transgenic , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction
5.
J Sports Med Phys Fitness ; 58(12): 1781-1789, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29072037

ABSTRACT

BACKGROUND: Spinning exercise is one of the most popular types of exercise in fitness industry. Its effects on the post exercise metabolism compared to the isocaloric cyclic endurance exercise are not fully understood. The aim of the present study was to compare the effects of isocaloric (299.1±10.8 kcal) spinning vs. endurance exercise on fat and carbohydrate utilization, glucose, lactate, glycerol and NEFA blood concentration during exercise and recovery. METHODS: Six recreationally active males (age: 23.5±0.71) were tested in two conditions: 1) 30-min spinning; 2) isocaloric continuous exercise. Each trial was followed by a 3-h recovery. Rates of carbohydrate and fat oxidation, the blood glucose, lactate, glycerol and NEFA concentration were assessed at rest, during exercise and recovery. RESULTS: Spinning induced significantly higher fat and lower carbohydrate oxidation rate during a recovery period in comparison to isocaloric endurance exercise trial. Spinning induced almost six-fold higher increase in lipid to carbohydrate oxidation rate ratio at the beginning of second hour of postexercise period in comparison to constant intensity trial and reached similar values at 3 hours after exercise. Blood lactate was higher (P<0.01) at the end of exercise in spinning than continuous exercise (8.57±0.9 vs. 0.72±0.1 mmol·L-1), but became similar at the 60 min of recovery. CONCLUSIONS: These data indicate that spinning induces higher metabolic responses during recovery period, and most effectively shifts the pattern of substrate use toward lipids vs. isocaloric endurance exercise.


Subject(s)
Energy Metabolism , Exercise/physiology , Lipid Metabolism , Oxygen Consumption , Blood Glucose/metabolism , Carbohydrate Metabolism , Exercise Therapy , Fatty Acids, Nonesterified/metabolism , Glycerol/blood , Humans , Lactic Acid/blood , Male , Oxidation-Reduction , Rest , Young Adult
6.
Cryobiology ; 71(3): 398-404, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26475491

ABSTRACT

The anti-inflammatory effect induced by exposure to low temperature might trigger the endocrine function of muscle and fat tissue. Thus, the aim of this study was to investigate the influence of the whole body cryostimulation (CRY) on irisin, a myokine which activates oxygen consumption in fat cells as well as thermogenesis. In addition, the relationship between hepcidin (Hpc) - hormone regulating iron metabolism, and inflammation was studied. A group of middle aged men (n = 12, 38 ± 9 years old, BMI > 30 kg m(-2)) participated in the study. Subjects were exposed to a series of 10 sessions in a cryogenic chamber (once a day at 9:30 am, for 3 min, at temperature -110 °C). Blood samples were collected before the first cryostimulation and after completing the last one. Prior to treatment body composition and fitness level were determined. The applied protocol of cryostimulation lead to rise the blood irisin in obese non-active men (338.8 ± 42.2 vs 407.6 ± 118.5 ng mL(-1)), whereas has no effect in obese active men (371.5 ± 30.0 vs 343.3 ± 47.6 ng mL(-1)). Values recorded 24 h after the last cryo-session correlated significantly with the fat tissue, yet inversely with the skeletal muscle mass. Therefore, we concluded the subcutaneous fat tissue to be the main source of irisin in response to cold exposures. The applied cold treatment reduced the high sensitivity C-reactive protein (hsCRP) and Hpc concentration confirming its anti-inflammatory effect.


Subject(s)
Cryotherapy/methods , Fibronectins/blood , Muscle, Skeletal/physiology , Subcutaneous Fat/physiology , Adult , Humans , Inflammation/metabolism , Male , Middle Aged , Motor Activity , Obesity/metabolism , Obesity/physiopathology , Obesity/therapy , Physical Fitness
SELECTION OF CITATIONS
SEARCH DETAIL
...