Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 18(8): e1010575, 2022 08.
Article in English | MEDLINE | ID: mdl-35925870

ABSTRACT

Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.


Subject(s)
Cytomegalovirus , Virus Assembly , Cytoplasm/metabolism , Humans , Virion
2.
Mol Microbiol ; 117(6): 1317-1323, 2022 06.
Article in English | MEDLINE | ID: mdl-35607767

ABSTRACT

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus and the leading cause of congenital disabilities as well as a significant cause of disease in immunocompromised patients. The envelopment and egress of HCMV particles is an essential step of the viral life cycle as it determines viral spread and potentially tropism. Here we review the current literature on HCMV envelopment and egress with a particular focus on the role of virus-containing multivesicular body-like vesicles for virus egress and spread. We discuss the difficulties of determining the cellular provenance of these structures in light of viral redistribution of cellular marker proteins and provide potential paths to illuminate their genesis. Finally, we discuss how divergent egress pathways could result in virions of different tropisms.


Subject(s)
Cytomegalovirus , Virus Assembly , Cytomegalovirus/metabolism , Humans , Proteins/metabolism , Virion
3.
PLoS One ; 16(8): e0244166, 2021.
Article in English | MEDLINE | ID: mdl-34347781

ABSTRACT

Fluorogenic aptamers are an alternative to established methodology for real-time imaging of RNA transport and dynamics. We developed Broccoli-aptamer concatemers ranging from 4 to 128 substrate-binding site repeats and characterized their behavior fused to an mCherry-coding mRNA in transient transfection, stable expression, and in recombinant cytomegalovirus infection. Concatemerization of substrate-binding sites increased Broccoli fluorescence up to a concatemer length of 16 copies, upon which fluorescence did not increase and mCherry signals declined. This was due to the combined effects of RNA aptamer aggregation and reduced RNA stability. Unfortunately, both cellular and cytomegalovirus genomes were unable to maintain and express high Broccoli concatemer copy numbers, possibly due to recombination events. Interestingly, negative effects of Broccoli concatemers could be partially rescued by introducing linker sequences in between Broccoli repeats warranting further studies. Finally, we show that even though substrate-bound Broccoli is easily photobleached, it can still be utilized in live-cell imaging by adapting a time-lapse imaging protocol.


Subject(s)
Brassica/genetics , RNA Stability/genetics , RNA, Messenger/genetics , Aptamers, Nucleotide/genetics , Brassica/virology , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/genetics , Fluorescence , Fluorescent Dyes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...