Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612013

ABSTRACT

In recent decades, laser additive manufacturing has seen rapid development and has been applied to various fields, including the aerospace, automotive, and biomedical industries. However, the residual stresses that form during the manufacturing process can lead to defects in the printed parts, such as distortion and cracking. Therefore, accurately predicting residual stresses is crucial for preventing part failure and ensuring product quality. This critical review covers the fundamental aspects and formation mechanisms of residual stresses. It also extensively discusses the prediction of residual stresses utilizing experimental, computational, and machine learning methods. Finally, the review addresses the challenges and future directions in predicting residual stresses in laser additive manufacturing.

2.
Materials (Basel) ; 17(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399140

ABSTRACT

Coaxial wire-based laser metal deposition is a versatile and efficient additive process that can achieve a high deposition rate in the manufacturing of complex structures. In this paper, a three-beam coaxial wire system is studied, with particular attention to the effects of deposition height and laser defocusing on the resulting bead geometry. As the deposition standoff distance changes, so does the workpiece illumination proportion, which describes the ratio of energy going directly into the feedstock wire and into the substrate. Single titanium beads are deposited at varying defocus levels and deposition rates and the bead aspect ratio is measured and analyzed. Over the experimental settings, the defocusing level and deposition rate were found to have a significant effect on the resulting bead aspect ratio. As the defocusing level is increased away from the beam convergence plane, the spot size increases and the deposited track is wider and flatter. Process parameters can be used to tune the deposited material to a desired aspect ratio. In coaxial wire deposition, defocusing provides an adjustment mechanism to the distribution of heat between the wire and substrate and has an important impact on the resulting deposit.

SELECTION OF CITATIONS
SEARCH DETAIL
...