Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Radiat Res ; 201(5): 440-448, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38714319

ABSTRACT

The development of effective uses of biodosimetry in large-scale events has been hampered by residual, i.e., "legacy" thinking based on strategies that scale up from biodosimetry in small accidents. Consequently, there remain vestiges of unrealistic assumptions about the likely magnitude of victims in "large" radiation events and incomplete analyses of the logistics for making biodosimetry measurements/assessments in the field for primary triage. Elements remain from an unrealistic focus on developing methods to use biodosimetry in the initial stage of triage for a million or more victims. Based on recent events and concomitant increased awareness of the potential for large-scale events as well as increased sophistication in planning and experience in the development of biodosimetry, a more realistic assessment of the most effective roles of biodosimetry in large-scale events is urgently needed. We argue this leads to a conclusion that the most effective utilization of biodosimetry in very large events would occur in a second stage of triage, after initially winnowing the population by identifying those most in need of acute medical attention, based on calculations of geographic sites where significant exposures could have occurred. Understanding the potential roles and limitations of biodosimetry in large-scale events involving significant radiation exposure should lead to development of the most effective and useful biodosimetric techniques for each stage of triage for acute radiation syndrome injuries, i.e., based on more realistic assumptions about the underlying event and the logistics for carrying out biodosimetry for large populations.


Subject(s)
Acute Radiation Syndrome , Radioactive Hazard Release , Triage , Humans , Acute Radiation Syndrome/etiology , Risk Assessment , Triage/methods , Radiometry/methods
2.
Mol Imaging Biol ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177616

ABSTRACT

Within this special issue, many eminent investigators report on measurements of oxygen (O2) levels in tissues. Given the complexities of spatial and temporal heterogeneities of O2 in tissues and its many sources, this commentary draws attention to what such measurements do and do not actually assess regarding O2 levels in tissues. Given this limitation, it also discusses how these results can be used most effectively. To provide a convenient mechanism to discuss these issues more fully, this analysis focuses on measurements using EPR oximetry, but these considerations apply to all other techniques. The nature of the delivery of O2 to tissues and the mechanisms by which O2 is consumed necessarily result in very different levels of O2 within the volume of each voxel of a measurement. Better spatial resolution cannot fully resolve the problem because the variations include O2 gradients within each cell. Improved resolution of the time-dependent variation in O2 is also very challenging because O2 levels within tissues can have fluctuations of O2 levels in the range of milliseconds, while most methods require longer times to acquire the data from each voxel. Based on these issues, we argue that the values obtained inevitably are complex aggregates of averages of O2 levels across space and time in the tissue. These complexities arise from the complex physiology of tissues and are compounded by the limitations of the technique and its ability to acquire data. However, one often can obtain very meaningful and useful results if these complexities and limitations are taken into account. We illustrate this, using results obtained with in vivo EPR oximetry, especially utilizing its capacity to make repeated measurements to follow changes in O2 levels that occur with interventions and/or over time.

3.
Int J Radiat Oncol Biol Phys ; 119(1): 292-301, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38072322

ABSTRACT

PURPOSE: Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS: A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS: Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS: This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.


Subject(s)
Tooth , Humans , Electron Spin Resonance Spectroscopy/methods , Tooth/chemistry , Tooth/radiation effects , Whole-Body Irradiation , Radiometry/methods , Radiation Dosage
4.
Adv Exp Med Biol ; 1438: 127-133, 2023.
Article in English | MEDLINE | ID: mdl-37845451

ABSTRACT

The aim of this review is to stimulate readers to undertake appropriate investigations of the mechanism for a possible oxygen effect in FLASH. FLASH is a method of delivery of radiation that empirically, in animal models, appears to decrease the impact of radiation on normal tissues while retaining full effect on tumors. This has the potential for achieving a significantly increased effectiveness of radiation therapy. The mechanism is not known but, especially in view of the prominent role that oxygen has in the effects of radiation, investigations of mechanisms of FLASH have often focused on impacts of FLASH on oxygen levels. We and others have previously shown that simple differential depletion of oxygen directly changing the response to radiation is not a likely mechanism. In this review we consider how time-varying changes in oxygen levels could account for the FLASH effect by changing oxygen-dependent signaling in cells. While the methods of delivering FLASH are still evolving, current approaches for FLASH can differ from conventional irradiation in several ways that can impact the pattern of oxygen consumption: the rate of delivery of the radiation (40 Gy/s vs. 0.1 Gy/s), the time over which each fraction is delivered (e.g., <0.5 s. vs. 300 s), the delivery in pulses, the number of fractions, the size of the fractions, and the total duration of treatment. Taking these differences into account and recognizing that cell signaling is an intrinsic component of the need for cells to maintain steady-state conditions and, therefore, is activated by small changes in the environment, we delineate the potential time dependent changes in oxygen consumption and overview the cell signaling pathways whose differential activation by FLASH could account for the observed biological effects of FLASH. We speculate that the most likely pathways are those involved in repair of damaged DNA.


Subject(s)
Neoplasms , Oxygen , Animals , Oxygen/metabolism , Neoplasms/radiotherapy , DNA Damage , Radiotherapy Dosage
5.
Radiat Prot Dosimetry ; 199(14): 1450-1459, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721059

ABSTRACT

Extremely high dose rate radiation delivery (FLASH) for cancer treatment has been shown to produce less damage to normal tissues while having the same radiotoxic effect on tumor tissue (referred to as the FLASH effect). Research on the FLASH effect has two very pertinent implications for the field of biodosimetry: (1) FLASH is a good model to simulate delivery of prompt radiation from the initial moments after detonating a nuclear weapon and (2) the FLASH effect elucidates how dose rate impacts the biological mechanisms that underlie most types of biological biodosimetry. The impact of dose rate will likely differ for different types of biodosimetry, depending on the specific underlying mechanisms. The greatest impact of FLASH effects is likely to occur for assays based on biological responses to radiation damage, but the consequences of differential effects of dose rates on the accuracy of dose estimates has not been taken into account.


Subject(s)
Biological Assay , Nuclear Weapons
6.
Radiat Prot Dosimetry ; 199(14): 1441-1449, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721062

ABSTRACT

This paper briefly examines electron paramagnetic resonance (EPR) techniques to measure dose from exposure to external radiation, assessing their current status, potential future uses and the challenges impacting their progress. We conclude the uses and potential value of different EPR techniques depend on the number of victims and whether they characterize short- or long-term risks from exposure. For large populations, EPR biodosimetry based on in vivo measurements or using co-located inanimate objects offer the greatest promise for assessing acute, life-threatening risk and the magnitude and extent of such risk. To assess long-term risk, ex vivo EPR methods using concentrated enamel from exfoliated teeth are most impactful. For small groups, ex vivo EPR biodosimetry based on available samples of teeth, nails and/or bones are most useful. The most important challenges are common to all approaches: improve the technique's technical capabilities and advance recognition by planning groups of the relative strengths EPR techniques offer for each population size. The most useful applications are likely to be for triage and medical guidance in large events and for radiation epidemiology to evaluate long-term risks.


Subject(s)
Triage , Electron Spin Resonance Spectroscopy
7.
Radiat Prot Dosimetry ; 199(14): 1539-1550, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37721065

ABSTRACT

Following large-scale radiation events, an overwhelming number of people will potentially need mitigators or treatment for radiation-induced injuries. This necessitates having methods to triage people based on their dose and its likely distribution, so life-saving treatment is directed only to people who can benefit from such care. Using estimates of victims following an improvised nuclear device striking a major city, we illustrate a two-tier approach to triage. At the second tier, after first removing most who would not benefit from care, biodosimetry should provide accurate dose estimates and determine whether the dose was heterogeneous. We illustrate the value of using in vivo electron paramagnetic resonance nail biodosimetry to rapidly assess dose and determine its heterogeneity using independent measurements of nails from the hands and feet. Having previously established its feasibility, we review the benefits and challenges of potential improvements of this method that would make it particularly suitable for tier 2 triage. Improvements, guided by a user-centered approach to design and development, include expanding its capability to make simultaneous, independent measurements and improving its precision and universality.


Subject(s)
Nails , Radiation Injuries , Humans , Triage , Electron Spin Resonance Spectroscopy , Hand
8.
Adv Exp Med Biol ; 1395: 315-321, 2022.
Article in English | MEDLINE | ID: mdl-36527655

ABSTRACT

The delivery of radiation at an ultra-high dose rate (FLASH) is an important new approach to radiotherapy (RT) that appears to be able to improve the therapeutic ratio by diminishing damage to normal tissues. While the mechanisms by which FLASH improves outcomes have not been established, a role involving molecular oxygen (O2) is frequently mentioned. In order to effectively determine if the protective effect of FLASH RT occurs via a differential direct depletion of O2 (compared to conventional radiation), it is essential to consider the known role of O2 in modifying the response of cells and tissues to ionising radiation (known as 'the oxygen effect'). Considerations include: (1) The pertinent reaction involves an unstable intermediate of radiation-damaged DNA, which either undergoes chemical repair to restore the DNA or reacts with O2, resulting in an unrepairable lesion in the DNA, (2) These reactions occur in the nuclear DNA, which can be used to estimate the distance needed for O2 to diffuse through the cell to reach the intermediates, (3) The longest lifetime that the reactive site of the DNA is available to react with O2 is 1-10 µsec, (4) Using these lifetime estimates and known diffusion rates in different cell media, the maximal distance that O2 could travel in the cytosol to reach the site of the DNA (i.e., the nucleus) in time to react are 60-185 nm. This calculation defines the volume of oxygen that is pertinent for the direct oxygen effect, (5) Therefore, direct measurements of oxygen to determine if FLASH RT operates through differential radiochemical depletion of oxygen will require the ability to measure oxygen selectively in a sphere of <200 nm, with a time resolution of the duration of the delivery of FLASH, (6) It also is possible that alterations of oxygen levels by FLASH could occur more indirectly by affecting oxygen-dependent cell signalling and/or cellular repair.


Subject(s)
DNA Damage , Oxygen , Radiotherapy Dosage
10.
Front Oncol ; 11: 743256, 2021.
Article in English | MEDLINE | ID: mdl-34660306

ABSTRACT

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

11.
Adv Exp Med Biol ; 1269: 301-308, 2021.
Article in English | MEDLINE | ID: mdl-33966234

ABSTRACT

Clinical measurements of O2 in tissues will inevitably provide data that are at best aggregated and will not reflect the inherent heterogeneity of O2 in tissues over space and time. Additionally, the nature of all existing techniques to measure O2 results in complex sampling of the volume that is sensed by the technique. By recognizing these potential limitations of the measures, one can focus on the very important and useful information that can be obtained from these techniques, especially data about factors that can change levels of O2 and then exploit these changes diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2.


Subject(s)
Oxygen Consumption , Oxygen , Blood Gas Analysis
12.
Adv Exp Med Biol ; 1269: 379-386, 2021.
Article in English | MEDLINE | ID: mdl-33966246

ABSTRACT

The effectiveness of blood transfusions can be impacted by storage and extensive processing techniques that involve treatment of red blood cells (RBCs) with pathogen reduction technologies (e.g., UV-light and chemical treatment), ex vivo stem cell derivation/maturation methods, and bioengineering of RBCs using nanotechnology. Therefore, there is a need to have methods that assess the evaluation of the effectiveness of transfusions to achieve their intended purpose: to increase oxygenation of critical tissues. Consequently, there has been intense interest in the development of techniques targeted at optimizing the assessment of RBC quality in preclinical and clinical settings. We provide a critical assessment of the ability of currently used methods to provide unambiguous information on oxygen levels in tissues and conclude that they cannot do this. This is because they are based on surrogates for the true goal of transfusion, which is to increase oxygenation of critical organs. This does not mean that they are valueless, but it does indicate that other methods are needed to provide direct measurements of oxygen in tissues. We report here on the initial results of a method that can provide direct assessment of the impact of the transfusion on tissue oxygen: EPR oximetry. It has the potential to provide such information in both preclinical and clinical settings for the assessment of blood quality posttransfusion.


Subject(s)
Erythrocyte Transfusion , Oxygen , Blood Transfusion , Erythrocytes , Oximetry
13.
Sci Rep ; 11(1): 4422, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627688

ABSTRACT

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

14.
Front Oncol ; 10: 572060, 2020.
Article in English | MEDLINE | ID: mdl-33194670

ABSTRACT

Introduction: Tumor hypoxia confers both a poor prognosis and increased resistance to oncologic therapies, and therefore, hypoxia modification with reliable oxygen profiling during anticancer treatment is desirable. The OxyChip is an implantable oxygen sensor that can detect tumor oxygen levels using electron paramagnetic resonance (EPR) oximetry. We report initial safety and feasibility outcomes after OxyChip implantation in a first-in-humans clinical trial (NCT02706197, www.clinicaltrials.gov). Materials and Methods: Twenty-four patients were enrolled. Eligible patients had a tumor ≤ 3 cm from the skin surface with planned surgical resection as part of standard-of-care therapy. Most patients had a squamous cell carcinoma of the skin (33%) or a breast malignancy (33%). After an initial cohort of six patients who received surgery alone, eligibility was expanded to patients receiving either chemotherapy or radiotherapy prior to surgical resection. The OxyChip was implanted into the tumor using an 18-G needle; a subset of patients had ultrasound-guided implantation. Electron paramagnetic resonance oximetry was carried out using a custom-built clinical EPR scanner. Patients were evaluated for associated toxicity using the Common Terminology Criteria for Adverse Events (CTCAE); evaluations started immediately after OxyChip placement, occurred during every EPR oximetry measurement, and continued periodically after removal. The OxyChip was removed during standard-of-care surgery, and pathologic analysis of the tissue surrounding the OxyChip was performed. Results: Eighteen patients received surgery alone, while five underwent chemotherapy and one underwent radiotherapy prior to surgery. No unanticipated serious adverse device events occurred. The maximum severity of any adverse event as graded by the CTCAE was 1 (least severe), and all were related to events typically associated with implantation. After surgical resection, 45% of the patients had no histopathologic findings specifically associated with the OxyChip. All tissue pathology was "anticipated" excepting a patient with greater than expected inflammatory findings, which was assessed to be related to the tumor as opposed to the OxyChip. Conclusion: This report of the first-in-humans trial of OxyChip implantation and EPR oximetry demonstrated no significant clinical pathology or unanticipated serious adverse device events. Use of the OxyChip in the clinic was thus safe and feasible.

15.
Physiol Rep ; 8(15): e14541, 2020 08.
Article in English | MEDLINE | ID: mdl-32786045

ABSTRACT

It is well understood that the level of molecular oxygen (O2 ) in tissue is a very important factor impacting both physiology and pathological processes as well as responsiveness to some treatments. Data on O2 in tissue could be effectively utilized to enhance precision medicine. However, the nature of the data that can be obtained using existing clinically applicable techniques is often misunderstood, and this can confound the effective use of the information. Attempts to make clinical measurements of O2 in tissues will inevitably provide data that are aggregated over time and space and therefore will not fully represent the inherent heterogeneity of O2 in tissues. Additionally, the nature of existing techniques to measure O2 may result in uneven sampling of the volume of interest and therefore may not provide accurate information on the "average" O2 in the measured volume. By recognizing the potential limitations of the O2 measurements, one can focus on the important and useful information that can be obtained from these techniques. The most valuable clinical characterizations of oxygen are likely to be derived from a series of measurements that provide data about factors that can change levels of O2 , which then can be exploited both diagnostically and therapeutically. The clinical utility of such data ultimately needs to be verified by careful studies of outcomes related to the measured changes in levels of O2 .


Subject(s)
Neoplasms/metabolism , Oxygen Consumption , Oxygen/analysis , Animals , Humans , Magnetic Resonance Imaging/methods , Neoplasms/diagnosis , Neoplasms/diagnostic imaging , Optical Imaging/methods , Oximetry/methods , Oxygen/blood
16.
Health Phys ; 119(1): 72-82, 2020 07.
Article in English | MEDLINE | ID: mdl-32175928

ABSTRACT

An effective medical response to a large-scale radiation event requires prompt and effective initial triage so that appropriate care can be provided to individuals with significant risk for severe acute radiation injury. Arguably, it would be advantageous to use injury rather than radiation dose for the initial assessment; i.e., use bioassays of biological damage. Such assays would be based on changes in intrinsic biological response elements; e.g., up- or down-regulation of genes, proteins, metabolites, blood cell counts, chromosomal aberrations, micronuclei, micro-RNA, cytokines, or transcriptomes. Using a framework to evaluate the feasibility of biodosimetry for triaging up to a million people in less than a week following a major radiation event, Part 1 analyzes the logistical feasibility and clinical needs for ensuring that biomarkers of organ-specific injury could be effectively used in this context. We conclude that the decision to use biomarkers of organ-specific injury would greatly benefit by first having independent knowledge of whether the person's exposure was heterogeneous and, if so, what was the dose distribution (to determine which organs were exposed to high doses). In Part 2, we describe how these two essential needs for prior information (heterogeneity and dose distribution) could be obtained by using in vivo nail dosimetry. This novel physical biodosimetry method can also meet the needs for initial triage, providing non-invasive, point-of-care measurements made by non-experts with immediate dose estimates for four separate anatomical sites. Additionally, it uniquely provides immediate information as to whether the exposure was homogeneous and, if not, it can estimate the dose distribution. We conclude that combining the capability of methods such as in vivo EPR nail dosimetry with bioassays to predict organ-specific damage would allow effective use of medical resources to save lives.


Subject(s)
Biomarkers/analysis , Radiation Injuries/diagnosis , Risk Assessment/methods , Triage/methods , Biological Assay , Blood Cell Count/methods , Chromosome Aberrations/radiation effects , Gene Expression Regulation/radiation effects , Humans , Metabolome/radiation effects , Point-of-Care Systems , Radiation Dosage , Radiation Exposure/adverse effects , Radiometry
17.
Health Care Manage Rev ; 45(1): E1-E12, 2020.
Article in English | MEDLINE | ID: mdl-31764311

ABSTRACT

In May 2019, scholars in management and organization of health care organizations and systems met. The opening plenary was a moderated discussion with five distinguished scholars who have exemplified pushing the frontier of organizational theory and practice throughout their careers: Ann Barry Flood of Dartmouth College, John Kimberly of the University of Pennsylvania, Anthony (Tony) Kovner of New York University, Stephen (Steve) Shortell of University of California at Berkeley, and Jacqueline (Jackie) Zinn of Temple University. The discussion was moderated by Ingrid Nembhard of the University of Pennsylvania. The goal of the plenary was to provide an opportunity to hear from senior members of the health care management community how they think about organizational behavior and theory, changes that they have observed, research gaps that they see, and lessons for research and practice that they have learned. This article is the transcript of that plenary discussion. It is shared to capture the intellectual history of the field and help surface the critical advancements still needed in organizational theory and practice in health care. The closing remarks of the panelists summarize recommendations for both practice and scholarship in health care organization management.


Subject(s)
Efficiency, Organizational , Health Facility Administration , Health Services Research , Models, Organizational , Career Mobility , Congresses as Topic , Delivery of Health Care/organization & administration , Health Facilities , Humans , United States
18.
Adv Exp Med Biol ; 1072: 233-239, 2018.
Article in English | MEDLINE | ID: mdl-30178351

ABSTRACT

This paper considers the critical role that academics can have in the development of clinical innovations and especially how their impact can be optimized. The focus should be on establishing the safety and efficacy of new approaches while also incorporating human factors and human use considerations into the inventions. It is very advantageous to work in concert with the end-users (operators and clinicians) to help ensure that the innovation will be useful and feasible to be incorporated into actual clinical practice as intended. This strategy enables developments to tackle real clinical needs by providing novel strategies to improve patient care while using solutions that fit into clinical practice and that are welcomed by patients and clinical staff. These principles are illustrated by a case study of the development of clinical in vivo EPR oximetry.


Subject(s)
Equipment Design , Inventions , Oximetry/methods , Biomedical Engineering , Biomedical Technology , Humans
19.
Phys Med Biol ; 63(16): 165002, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30033935

ABSTRACT

In a large-scale radiation event, thousands may be exposed to unknown amounts of radiation, some of which may be life-threatening without immediate attention. In such situations, a method to quickly and reliably estimate dose would help medical responders triage victims to receive life-saving care. We developed such a method using electron paramagnetic resonance (EPR) to make in vivo measurements of the maxillary incisors. This report provides evidence that the use of in vitro studies can provide data that are fully representative of the measurements made in vivo. This is necessary because, in order to systematically test and improve the reliability and accuracy of the dose estimates made with our EPR dosimetry system, it is important to conduct controlled studies in vitro using irradiated human teeth. Therefore, it is imperative to validate whether our in vitro models adequately simulate the measurements made in vivo, which are intended to help guide decisions on triage after a radiation event. Using a healthy volunteer with a dentition gap that allows using a partial denture, human teeth were serially irradiated in vitro and then, using a partial denture, placed in the volunteer's mouth for measurements. We compared dose estimates made using in vivo measurements made in the volunteer's mouth to measurements made on the same teeth in our complex mouth model that simulates electromagnetic and anatomic properties of the mouth. Our results demonstrate that this mouth model can be used in in vitro studies to develop the system because these measurements appropriately model in vivo conditions.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , In Vivo Dosimetry/methods , Models, Biological , Tooth/radiation effects , Electron Spin Resonance Spectroscopy/instrumentation , Electron Spin Resonance Spectroscopy/statistics & numerical data , Humans , In Vivo Dosimetry/statistics & numerical data , Reproducibility of Results
20.
Health Phys ; 115(1): 140-150, 2018 07.
Article in English | MEDLINE | ID: mdl-29787440

ABSTRACT

Instrumentation and application methodologies for rapidly and accurately estimating individual ionizing radiation dose are needed for on-site triage in a radiological/nuclear event. One such methodology is an in vivo X-band, electron paramagnetic resonance, physically based dosimetry method to directly measure the radiation-induced signal in fingernails. The primary components under development are key instrument features, such as resonators with unique geometries that allow for large sampling volumes but limit radiation-induced signal measurements to the nail plate, and methodological approaches for addressing interfering signals in the nail and for calibrating dose from radiation-induced signal measurements. One resonator development highlighted here is a surface resonator array designed to reduce signal detection losses due to the soft tissues underlying the nail plate. Several surface resonator array geometries, along with ergonomic features to stabilize fingernail placement, have been tested in tissue-equivalent nail models and in vivo nail measurements of healthy volunteers using simulated radiation-induced signals in their fingernails. These studies demonstrated radiation-induced signal detection sensitivities and quantitation limits approaching the clinically relevant range of ≤ 10 Gy. Studies of the capabilities of the current instrument suggest that a reduction in the variability in radiation-induced signal measurements can be obtained with refinements to the surface resonator array and ergonomic features of the human interface to the instrument. Additional studies are required before the quantitative limits of the assay can be determined for triage decisions in a field application of dosimetry. These include expanded in vivo nail studies and associated ex vivo nail studies to provide informed approaches to accommodate for a potential interfering native signal in the nails when calculating the radiation-induced signal from the nail plate spectral measurements and to provide a method for calibrating dose estimates from the radiation-induced signal measurements based on quantifying experiments in patients undergoing total-body irradiation or total-skin electron therapy.


Subject(s)
Biological Assay/methods , Electron Spin Resonance Spectroscopy/methods , Mechanotransduction, Cellular/radiation effects , Nails/chemistry , Radiometry/methods , Triage/standards , Humans , Nails/radiation effects , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...