Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36715153

ABSTRACT

The uptake and storage of extracellular orthophosphate (Pi) by polyphosphate (polyP) accumulating bacteria may contribute to mineral dissolution in the oral cavity. To test the effect of potential inhibitors of polyP kinases on Rothia dentocariosa, gallein (0, 25, 50, and 100 µM) and fluoride (0, 50, and 100 ppm) were added to R. dentocariosa cultures grown in brain-heart infusion broth. At a late log growth phase (8 h), extracellular Pi was measured using an ascorbic acid assay, and polyP was isolated from bacterial cells treated with RNA/DNAases using a neutral phenol/chloroform extraction. Extracts were hydrolyzed and quantified as above. Gallein and fluoride had minor effects on bacterial growth with NaF having a direct effect on media pH. Gallein (≥25 µM) and fluoride (≥50 ppm) attenuated the bacterial drawdown of extracellular Pi by 56.7% (P < 0.05) and 37.3% (P < 0.01). There was a corresponding polyP synthesis decrease of 73.2% (P < 0.0001) from gallein and 83.1% (P < 0.0001) from fluoride. Attenuated total reflectance-Fourier-transform infrared spectroscopy validated the presence of polyP and its reduced concentration in R. dentocariosa bacterial cells following gallein and fluoride treatment. Rothia dentocariosa can directly change extracellular Pi and accumulate intracellular polyP, but the mechanism is attenuated by gallein and NaF.


Subject(s)
Actinomycetales , Fluorides , Polyphosphates , Mouth/microbiology
2.
PLoS One ; 16(11): e0258124, 2021.
Article in English | MEDLINE | ID: mdl-34818329

ABSTRACT

Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.


Subject(s)
Bacteria/metabolism , Geologic Sediments/microbiology , Microbiota , Sulfur/metabolism , Geography , Namibia , Principal Component Analysis , RNA, Ribosomal, 16S/genetics
3.
ISME J ; 15(7): 2043-2056, 2021 07.
Article in English | MEDLINE | ID: mdl-33574572

ABSTRACT

Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) µmol CaCO3 • cm-2 • yr-1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.


Subject(s)
Methane , Rhodobacteraceae , Carbonates , Geologic Sediments , Oxidation-Reduction , Solubility , Sulfur
4.
Geobiology ; 17(1): 76-90, 2019 01.
Article in English | MEDLINE | ID: mdl-30369004

ABSTRACT

The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment-hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate-reducing bacteria and sulfur-oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast-associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.


Subject(s)
Aquatic Organisms/metabolism , Bacteria/metabolism , DNA, Bacterial/analysis , Geologic Sediments/chemistry , Minerals/analysis , Phosphates/analysis , Atlantic Ocean
5.
Genome Announc ; 6(20)2018 May 17.
Article in English | MEDLINE | ID: mdl-29773637

ABSTRACT

We report here the closed genome sequences of Celeribacter baekdonensis strain LH4 and five unnamed plasmids obtained through PacBio sequencing with 99.99% consensus concordance. The genomes contained several distinctive features not found in other published Celeribacter genomes, including the potential to aerobically degrade styrene and other phenolic compounds.

6.
Appl Environ Microbiol ; 84(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29352083

ABSTRACT

Bacteria that accumulate polyphosphates have previously been shown to dynamically influence the solubility of phosphatic minerals in marine settings and wastewater. Here, we show that dental plaque, saliva, and carious lesions all contain abundant polyphosphate-accumulating bacteria. Saturation state modeling results, informed by phosphate uptake experiments using the model organism Lactobacillus rhamnosus, which is known to inhabit advanced carious lesions, suggest that polyphosphate accumulation can lead to undersaturated conditions with respect to hydroxyapatite under some oral cavity conditions. The cell densities of polyphosphate-accumulating bacteria we observed in some regions of oral biofilms are comparable to those that produce undersaturated conditions (i.e., those that thermodynamically favor mineral dissolution) in our phosphate uptake experiments with L. rhamnosus These results suggest that the localized generation of undersaturated conditions by polyphosphate-accumulating bacteria constitutes a new potential mechanism of tooth dissolution that may augment the effects of metabolic acid production.IMPORTANCE Dental caries is a serious public health issue that can have negative impacts on overall quality of life and oral health. The role of oral bacteria in the dissolution of dental enamel and dentin that can result in carious lesions has long been solely ascribed to metabolic acid production. Here, we show that certain oral bacteria may act as a dynamic shunt for phosphate in dental biofilms via the accumulation of a polymer known as polyphosphate-potentially mediating phosphate-dependent conditions such as caries (dental decay).


Subject(s)
Bacteria/metabolism , Dental Caries/microbiology , Dental Plaque/microbiology , Polyphosphates/metabolism , Saliva/microbiology , Adolescent , Child , Child, Preschool , Female , Humans , Male , Mouth/microbiology
7.
mBio ; 8(6)2017 11 07.
Article in English | MEDLINE | ID: mdl-29114021

ABSTRACT

The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts.IMPORTANCE The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.


Subject(s)
Genome, Bacterial , Oxidoreductases/metabolism , Thiotrichaceae/genetics , Thiotrichaceae/metabolism , Carbon/metabolism , Formazans/chemistry , Geologic Sediments/microbiology , Microscopy , Oxidation-Reduction , Sulfur/metabolism , Tetrazolium Salts/chemistry , Thiotrichaceae/growth & development , Thiotrichaceae/ultrastructure
8.
Genome Announc ; 5(32)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28798167

ABSTRACT

We report the closed and annotated genome sequence of Sulfuriferula sp. strain AH1. Strain AH1 has a 2,877,007-bp chromosome that includes a partial Sox system for inorganic sulfur oxidation and a complete nitrogen fixation pathway. It also has a single 39,138-bp plasmid with genes for arsenic and mercury resistance.

9.
Front Microbiol ; 8: 791, 2017.
Article in English | MEDLINE | ID: mdl-28533768

ABSTRACT

Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white mat in an artesian fountain that is fed by groundwater similar to Isolated Sinkhole, but that sits in shallow water and is exposed to sunlight. De novo assembly and binning of metagenomic data from these two communities yielded near complete genomes and revealed representatives of two families of LSB. The Isolated Sinkhole community was dominated by novel members of the Beggiatoaceae that are phylogenetically intermediate between known freshwater and marine groups. Several of these Beggiatoaceae had 16S rRNA genes that contained introns previously observed only in marine taxa. The Alpena fountain was dominated by populations closely related to Thiothrix lacustris and an SM1 euryarchaeon known to live symbiotically with Thiothrix spp. The SM1 genomic bin contained evidence of H2-based lithoautotrophy. Genomic bins of both the Thiothrix and Beggiatoaceae contained genes for sulfur oxidation via the rDsr pathway, H2 oxidation via Ni-Fe hydrogenases, and the use of O2 and nitrate as electron acceptors. Mats at both sites also contained Deltaproteobacteria with genes for dissimilatory sulfate reduction (sat, apr, and dsr) and hydrogen oxidation (Ni-Fe hydrogenases). Overall, the microbial mats at the two sites held low-diversity microbial communities, displayed evidence of coupled sulfur cycling, and did not differ largely in their metabolic potentials, despite the environmental differences. These results show that groundwater-fed communities in an artesian fountain and in submerged sinkholes of Lake Huron are a rich source of novel LSB, associated heterotrophic and sulfate-reducing bacteria, and archaea.

10.
Front Microbiol ; 7: 964, 2016.
Article in English | MEDLINE | ID: mdl-27446006

ABSTRACT

Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 µm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.

11.
Front Microbiol ; 7: 603, 2016.
Article in English | MEDLINE | ID: mdl-27199933

ABSTRACT

The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.

12.
ISME J ; 10(4): 1015-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26381585

ABSTRACT

Microorganisms can influence inorganic phosphate (Pi) in pore waters, and thus the saturation state of phosphatic minerals, by accumulating and hydrolyzing intracellular polyphosphate (poly-P). Here we used comparative metatranscriptomics to explore microbial poly-P utilization in marine sediments. Sulfidic marine sediments from methane seeps near Barbados and from the Santa Barbara Basin (SBB) oxygen minimum zone were incubated under oxic and anoxic sulfidic conditions. Pi was sequestered under oxic conditions and liberated under anoxic conditions. Transcripts homologous to poly-P kinase type 2 (ppk2) were 6-22 × more abundant in metatranscriptomes from the anoxic incubations, suggesting that reversible poly-P degradation by Ppk2 may be an important metabolic response to anoxia by marine microorganisms. Overall, diverse taxa differentially expressed homologues of genes for poly-P degradation (ppk2 and exopolyphosphatase) under different incubation conditions. Sulfur-oxidizing microorganisms appeared to preferentially express genes for poly-P degradation under anoxic conditions, which may impact phosphorus cycling in a wide range of oxygen-depleted marine settings.


Subject(s)
Geologic Sediments , Oxygen/metabolism , Polyphosphates/metabolism , Sulfides/metabolism , Transcriptome , Bacteria/metabolism , Hydrolysis , Microbiota , Minerals , Phosphorus , RNA, Ribosomal/genetics , Sulfur/metabolism
13.
Genome Announc ; 3(3)2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26089430

ABSTRACT

We report the closed genome sequence of Sedimenticola thiotaurini strain SIP-G1 and an unnamed plasmid obtained through PacBio sequencing with 100% consensus concordance. The genome contained several distinctive features not found in other published Sedimenticola genomes, including a complete nitrogen fixation pathway, a complete ethanolamine degradation pathway, and an alkane-1-monooxygenase.

14.
Int J Syst Evol Microbiol ; 65(8): 2522-2530, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944805

ABSTRACT

A marine facultative anaerobe, strain SIP-G1T, was isolated from salt marsh sediments, Falmouth, MA, USA. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it belongs to an unclassified clade of Gammaproteobacteria that includes numerous sulfur-oxidizing bacteria that are endosymbionts of marine invertebrates endemic to sulfidic habitats. Strain SIP-G1T is a member of the genus Sedimenticola, of which there is one previously described isolate, Sedimenticola selenatireducens AK4OH1T. S. selenatireducens AK4OH1T was obtained for further characterization and comparison with strain SIP-G1T. The two strains were capable of coupling the oxidation of thiosulfate, tetrathionate, elemental sulfur and sulfide to autotrophic growth and they produced sulfur inclusions as metabolic intermediates. They showed varying degrees of O2 sensitivity, but when provided amino acids or peptides as a source of energy, they appeared more tolerant of O2 and exhibited concomitant production of elemental sulfur inclusions. The organic substrate preferences and limitations of these two organisms suggest that they possess an oxygen-sensitive carbon fixation pathway(s). Organic acids may be used to produce NADPH through the TCA cycle and are used in the formation of polyhydroxyalkanoates. Cell-wall-deficient morphotypes appeared when organic compounds (especially acetate) were present in excess and reduced sulfur was absent. Levels of DNA-DNA hybridization (∼47%) and phenotypic characterization indicate that strain SIP-G1T represents a separate species within the genus Sedimenticola, for which the name Sedimenticola thiotaurini sp. nov. is proposed. The type strain is SIP-G1T ( = ATCC BAA-2640T = DSM 28581T). The results also justify emended descriptions of the genus Sedimenticola and of S. selenatireducens.


Subject(s)
Gammaproteobacteria/classification , Geologic Sediments/microbiology , Phylogeny , Wetlands , DNA, Bacterial/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Massachusetts , Molecular Sequence Data , Nucleic Acid Hybridization , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification , Thiosulfates/metabolism , Vitamin K 2/chemistry
15.
Appl Environ Microbiol ; 81(9): 3142-56, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25724961

ABSTRACT

Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including "Candidatus Thiopilula" spp. and "Ca. Thiophysa" spp. We discovered a population of "Ca. Thiopilula" spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 µm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados "Ca. Thiopilula" organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for "Ca. Thiopilula" and other sulfur-oxidizing microorganisms in the community. The novel observations of "Ca. Thiopilula" and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities.


Subject(s)
Cold Temperature , Gene Expression Profiling , Seawater/microbiology , Thiotrichaceae/cytology , Thiotrichaceae/genetics , Anaerobiosis , Barbados , Cluster Analysis , Cytoplasm/ultrastructure , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Nitrogen Compounds/metabolism , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfur/metabolism , Thiotrichaceae/isolation & purification , Vacuoles/ultrastructure
16.
Astrobiology ; 11(8): 775-86, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21970705

ABSTRACT

Manganese oxide (Mn oxide) minerals from bacterial sources produce electron paramagnetic resonance (EPR) spectral signatures that are mostly distinct from those of synthetic simulants and abiogenic mineral Mn oxides. Biogenic Mn oxides exhibit only narrow EPR spectral linewidths (∼500 G), whereas abiogenic Mn oxides produce spectral linewidths that are 2-6 times broader and range from 1200 to 3000 G. This distinction is consistent with X-ray structural observations that biogenic Mn oxides have abundant layer site vacancies and edge terminations and are mostly of single ionic species [i.e., Mn(IV)], all of which favor narrow EPR linewidths. In contrast, abiogenic Mn oxides have fewer lattice vacancies, larger particle sizes, and mixed ionic species [Mn(III) and Mn(IV)], which lead to the broader linewidths. These properties could be utilized in the search for extraterrestrial physicochemical biosignatures, for example, on Mars missions that include a miniature version of an EPR spectrometer.


Subject(s)
Bacteria/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Oxidation-Reduction
17.
J Microbiol Methods ; 86(1): 62-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21477623

ABSTRACT

One of the big operational problems facing laboratories today is the ability to rapidly distinguish between strains of bacteria that, while physiologically distinct, are nearly impossible to separate based on 16S rRNA gene sequence differences. Here we demonstrate that ITS-DGGE provides a convenient approach to distinguishing between closely related strains of Shewanella, some of which were impossible to separate and identify by 16 rRNA gene sequence alone. Examined Shewanella genomes contain 8-11 copies of rrn (ribosomal RNA gene) operons, and variable size and sequence of 16S-23S ITS (intergenic transcribed spacer) regions which result in distinct ITS-DGGE profiles. Phylogenetic constructions based on ITS are congruent with the genomic trees generated from concatenated core genes as well as with those based on conserved indels, suggesting that ITS patterns appear to be linked with evolutionary lineages and physiology. In addition, three new Shewanella strains (MFC 2, MFC 6, and MFC 14) were isolated from microbial fuel cells enriched from wastewater sludge and identified by ITS-DGGE. Subsequent physiological and electrochemical studies of the three isolates confirmed that each strain is phenotypically/genotypically distinct. Thus, this study validates ITS-DGGE as a quick fingerprint approach to identifying and distinguishing between closely related but novel Shewanella ecotypes.


Subject(s)
Bacterial Typing Techniques/methods , DNA Fingerprinting/methods , Denaturing Gradient Gel Electrophoresis/methods , Shewanella/classification , Shewanella/genetics , DNA, Bacterial/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Shewanella/isolation & purification
18.
Nature ; 445(7124): 198-201, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17183268

ABSTRACT

In situ phosphatization and reductive cell division have recently been discovered within the vacuolate sulphur-oxidizing bacteria. Here we show that certain Neoproterozoic Doushantuo Formation (about 600 million years bp) microfossils, including structures previously interpreted as the oldest known metazoan eggs and embryos, can be interpreted as giant vacuolate sulphur bacteria. Sulphur bacteria of the genus Thiomargarita have sizes and morphologies similar to those of many Doushantuo microfossils, including symmetrical cell clusters that result from multiple stages of reductive division in three planes. We also propose that Doushantuo phosphorite precipitation was mediated by these bacteria, as shown in modern Thiomargarita-associated phosphogenic sites, thus providing the taphonomic conditions that preserved other fossils known from the Doushantuo Formation.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Fossils , Geologic Sediments/microbiology , Minerals , Phosphates , Sulfur/metabolism , Animals , Bacteria/classification , Bacteria/cytology , China , History, Ancient , Oxidation-Reduction , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...