Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Chemosphere ; 229: 142-159, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31078029

ABSTRACT

Heavy metal contamination is a growing concern in the developing world. Inadequate water and wastewater treatment, coupled with increased industrial activity, have led to increased heavy metal contamination in rivers, lakes, and other water sources in developing countries. However, common methods for removing heavy metals from water sources, including membrane filtration, activated carbon adsorption, and electrocoagulation, are not feasible for developing countries. As a result, a significant amount of research has been conducted on low-cost adsorbents to evaluate their ability to remove heavy metals. In this review article, we summarize the current state of research on the removal of heavy metals with an emphasis on low-cost adsorbents that are feasible in the context of the developing world. This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials. Along with a summary of the use of these adsorbents in the removal of heavy metals, this article provides a summary of the influence of various water-quality parameters on heavy metals and these adsorbents. The proposed adsorption mechanisms for heavy metal removal are also discussed.


Subject(s)
Costs and Cost Analysis , Developing Countries , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/economics , Water/chemistry , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry
2.
Bioresour Technol ; 262: 284-293, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29723788

ABSTRACT

Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions.


Subject(s)
Carbon/chemistry , Charcoal
3.
ACS Appl Mater Interfaces ; 9(46): 40369-40377, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29111662

ABSTRACT

Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramicGO) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramicGO membrane (14.4-58.6 L/m2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramicGO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na2SO4, CaCl2, and CaSO4). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramicGO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

4.
Waste Manag ; 69: 480-491, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28888805

ABSTRACT

Food waste represents a rather large and currently underutilized source of potentially available and reusable nutrients. Laboratory-scale experiments evaluating the hydrothermal carbonization of food wastes collected from restaurants were conducted to understand how changes in feedstock composition and carbonization process conditions influence primary and secondary nutrient fate. Results from this work indicate that at all evaluated reaction times and temperatures, the majority of nitrogen, calcium, and magnesium remain integrated within the solid-phase, while the majority of potassium and sodium reside in the liquid-phase. The fate of phosphorus is dependent on reaction times and temperatures, with solid-phase integration increasing with higher reaction temperature and longer time. A series of leaching experiments to determine potential solid-phase nutrient availability were also conducted and indicate that, at least in the short term, nitrogen release from the solids is small, while almost all of the phosphorus present in the solids produced from carbonizing at 225 and 250°C is released. At a reaction temperature of 275°C, smaller fractions of the solid-phase total phosphorus are released as reaction times increase, likely due to increased solids incorporation. Using these data, it is estimated that up to 0.96% and 2.30% of nitrogen and phosphorus-based fertilizers, respectively, in the US can be replaced by the nutrients integrated within hydrochar and liquid-phases generated from the carbonization of currently landfilled food wastes.


Subject(s)
Food , Refuse Disposal/methods , Solid Waste , Carbon , Hot Temperature
5.
ACS Appl Mater Interfaces ; 8(34): 22270-9, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27517308

ABSTRACT

Three commercially available ultrafiltration (UF) membranes (poly(ether sulfone), PES) that have nominal molecular weight cut-offs (5, 10, and 30 kDa) were coated with graphene oxide (GO) nanosheets. Field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, confocal laser scanning microscopy, water contact angle measurements, and X-ray photoelectron spectroscopy were employed to determine the changed physicochemical properties of the membranes after GO coating. The water permeability and single-solute rejection of GO-coated (GOC) membranes for humic acid (HA) molecules were significantly higher by approximately 15% and 55%, respectively, compared to those of pristine UF membranes. However, the GOc membranes for single-solute tannic acid (TA) rejection showed similar trends of higher flux decline versus pristine PES membranes, because the relatively smaller TA molecules were readily adsorbed onto the membrane pores. When the mixed-solute of HA and TA rejection tests were performed, in particular, the adsorbed small TA molecules resulted in irreversible membrane fouling due to cake formation and membrane pore blocking on the membrane surface for the HA molecules. Although both membranes showed significantly higher flux declines for small molecules rejection, the GOc membranes showed better performance than the pristine UF membranes in terms of the rejection of various mixed-solute molecules, due to higher membrane recovery and antifouling capabilities.

6.
J Mol Model ; 22(8): 185, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27444876

ABSTRACT

A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes. The estimated membrane permeability is used to predict full-scale water flux by means of a process-level Monte Carlo simulation. Based on the results, the parameters of the model are observed to converge within 5-ns total simulation time. The results also indicate that the use of unique structural configurations in MD simulations is essential to capture realistic membrane properties at the molecular scale. Furthermore, the predicted full-scale water flux based on the estimated permeability is within the same order of magnitude of bench-scale experimental measurement of 1.72×10(-5) m/s.

7.
Ultrason Sonochem ; 32: 440-448, 2016 09.
Article in English | MEDLINE | ID: mdl-27150790

ABSTRACT

Sonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18WmL(-1), and a temperature of 15°C was higher (79% and 72%) at 1000kHz than at 28kHz (45% and 33%) for IBP and SMX, respectively. At the low frequency (28kHz) H2O2 production increased significantly, from 10µM (no GBs) to 86µM in the presence of GBs (0.1mm, 10gL(-1)); however, no enhancement was achieved at 1000kHz. In contrast, the H2O2 production increased from 10µM (no SWNTs) to 31µM at 28kHz and from 82µM (no SWNTs) to 111µM at 1000kHz in the presence of SWNTs (45mgL(-1)). Thus, maximum removals of IBP and SMX were obtained in the presence of a combination of GBs and SWNTs at the low frequency (94% and 88%) for 60min contact time; however, >99% and 97% removals were achieved for 40 and 60min contact times at the high frequency for IBP and SMX, respectively. The results indicate that both IBP and SMX degradation followed pseudo-first-order kinetics. Additionally, the enhanced removal of IBP and SMX in the presence of catalysts was because GBs and SWNTs increased the number of free OH radicals due to ultrasonic irradiation and the adsorption capacity increase with SWNT dispersion.


Subject(s)
Ibuprofen/chemistry , Nanotubes, Carbon , Sulfamethoxazole/chemistry , Ultrasonics , Adsorption , Hydrogen Peroxide
8.
Environ Sci Technol ; 50(7): 3562-71, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26928084

ABSTRACT

The aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering. Suwanee River Humic Acid (SRHA) was also used to determine the effect of natural macromolecules on nHOF aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged fullerene clusters, and the nC60s and nHOFs alike displayed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type interaction. The critical coagulation concentration (CCC) displayed a strong negative correlation with the carbon number in fullerenes and was estimated as 220, 150, 100, and 70 mM NaCl and 10, 12, 6, and 7.5 mM CaCl2 for nC60, nC70, nC76, and nC84, respectively. The aggregation mechanism (i.e., van der Waals interaction domination) was enumerated via molecular dynamics simulation and modified DLVO model. The presence of SRHA (2.5 mg TOC/L) profoundly influenced the aggregation behavior by stabilizing all fullerene clusters, even at a 100 mM NaCl concentration. The results from this study can be utilized to predict aggregation kinetics of nHOF clusters other than the ones studied here. The scaling factor for van der Waals interaction can also be used to model nHOF cluster interaction.


Subject(s)
Aquatic Organisms/metabolism , Fullerenes/chemistry , Electrophoresis , Humic Substances/analysis , Kinetics , Linear Models , Molecular Dynamics Simulation , Thermodynamics
9.
Waste Manag ; 43: 203-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26049203

ABSTRACT

Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment.


Subject(s)
Charcoal , Environment , Refuse Disposal/methods , Renewable Energy , Carbon , Computer Simulation , Electricity , Food , Food Packaging , Hot Temperature , Metals/chemistry , Models, Theoretical , South Carolina
10.
Bioresour Technol ; 187: 263-274, 2015.
Article in English | MEDLINE | ID: mdl-25863203

ABSTRACT

The purpose of this study is to develop regression models that describe the role of process conditions and feedstock chemical properties on carbonization product characteristics. Experimental data were collected and compiled from literature-reported carbonization studies and subsequently analyzed using two statistical approaches: multiple linear regression and regression trees. Results from these analyses indicate that both the multiple linear regression and regression tree models fit the product characteristics data well. The regression tree models provide valuable insight into parameter relationships. Relative weight analyses indicate that process conditions are more influential to the solid yields and liquid and gas-phase carbon contents, while feedstock properties are more influential on the hydrochar carbon content, energy content, and the normalized carbon content of the solid.


Subject(s)
Biological Products/chemistry , Carbon/chemistry , Heating/methods , Models, Statistical , Organic Chemicals/chemistry , Water/chemistry , Computer Simulation , Regression Analysis
11.
Chemosphere ; 136: 20-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25911329

ABSTRACT

The adsorptive properties of graphene oxide (GO) were characterized, and the binding energies of diclofenac (DCF) and sulfamethoxazole (SMX) on GO adsorption were predicted using molecular modeling. The adsorption behaviors of DCF and SMX were investigated in terms of GO dosage, contact time, and pH. Additionally, the effects of sonication on GO adsorption were examined. GO adsorption involves "oxygen-containing functional groups" (OCFGs) such as COOH, which exhibit negative charges over a wide range of pH values (pH 3-11). DCF (-18.8 kcal mol(-1)) had a more favorable binding energy on the GO surface than SMX (-15.9 kcal mol(-1)). Both DCF and SMX were removed from solution (adsorbed to GO), up to 35% and 12%, respectively, within 6h, and an increase in GO dosage enhanced the removal of DCF. Electrostatic repulsion occurred between dissociated DCF/SMX and the more negatively charged GO at basic pH (>pKa). The sonication of GO significantly improved the removal of DCF (75%) and SMX (30%) due to dispersion of exfoliated GO particles and the reduction of OCFGs on the GO surface. Both DCF and SMX in the adsorption isotherm were explained well by the Freundlich model. The results of this study can be used to maximize the adsorption capacities of micropollutants using GO in water treatment processes.


Subject(s)
Diclofenac/chemistry , Graphite/chemistry , Sulfamethoxazole/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Oxides , Solutions , Sonication , Water Purification/methods
12.
Environ Chem ; 12(6): 652-661, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26855611

ABSTRACT

Single-walled carbon nanotubes' (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date. The aggregation behavior of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalized with three anionic surfactants-sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium deoxycholate (SDOCO)-was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and di-valent (CaCl2) electrolytes as well as a 2.5 mg TOC/L Suwannee River humic acid (SRHA) were used as background chemistry. Overall, SDBS showed the most effectiveness in SWNT stability, followed by SDOCO and SDS. However, the relatively larger diameter (7,6) chiral tubes compromised the surfactant stability, compared to (6,5) chiral enrichment, due to enhanced van der Waals interaction. The presence of di-valent electrolytes overshadowed the chirality effects and resulted in similar aggregation behavior for both the SWNT samples. Molecular modeling results enumerated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of SRHA under 10 mM monovalent and mixed electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilization of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure.

13.
Bioresour Technol ; 154: 229-39, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24398151

ABSTRACT

Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources. Liquid waste streams may be ideal alternative liquid source candidates. Experiments were conducted to systematically evaluate how changes in pH, ionic strength, and organic carbon content of the initial process water influences cellulose carbonization. Results from the experiments conducted evaluating the influence of process water quality on carbonization indicate that changes in initial water quality do influence time-dependent carbonization product composition and yields. These results also suggest that using municipal and industrial wastewaters, with the exception of streams with high CaCl2 concentrations, may impart little influence on final carbonization products/yields.


Subject(s)
Carbon/chemistry , Cellulose/chemistry , Temperature , Water Quality , Water/pharmacology , Acetic Acid/pharmacology , Time Factors
14.
Nanotechnology ; 24(39): 395602, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24013496

ABSTRACT

Size-tunable stable aqueous fullerenes were prepared with different concentrations of biocompatible block-copolymer pluronic (PA) F-127, ranging from 0.001% to 1% (w/v). Size uniformity increased with the increase in PA concentration, yielding optimum 58.8 ± 5.6 and 61.8 ± 5.6 nm nC60s and nC70s, respectively (0.10%w/v PA), as observed using a dynamic light scattering technique. Fullerene aqueous suspensions also manifested enhanced stability in saline solution, Dulbecco's modified Eagle medium (DMEM), and Roswell Park Memorial Institute (RPMI) culture medium. Transmission electron microscopy was performed to elaborate on the morphology and size specificity of fullerene clusters. Physicochemical characterizations of the suspended fullerenes were performed through UV-vis spectroscopy and electrophoretic mobility measurements. PA molecules showed size restriction by encasement, as observed via molecular dynamics simulations. Such solubilization with controllable size and non-aggregating behavior can facilitate application enhancement and mechanistic environmental and toxicological studies of size-specific fullerenes.


Subject(s)
Fullerenes/chemistry , Polymers/chemistry , Sodium Chloride/chemistry , Biocompatible Materials/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Particle Size
15.
Chemosphere ; 93(9): 1989-96, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23931904

ABSTRACT

Hydrothermal carbonization of simulated food waste was performed at 250 °C for 20 h using deionized water (DI) and 0.01 N solutions of HCl, NaCl, and NaOH. The hydrochars produced were washed with acetone and the adsorptive capacity of the washed and unwashed hydrochars for atrazine were characterized. Using a generalized linear model, it was shown that the adsorptive capacity of the washed hydrochar was significantly higher than that of the unwashed hydrochars. The HCl processed unwashed hydrochar has a slightly higher adsorptive capacity compared to the DI processed hydrochar while both the NaOH processed washed and unwashed hydrochars were slightly lower than the corresponding DI processed hydrochars. (13)C solid-state NMR results showed no discernible differences in surface functional groups among the washed hydrochars and among the unwashed hydrochars. A clear decrease in alkyl groups and an increase in aromatic/olefinic-C groups were observed after acetone washing. (1)H liquid-phase NMR showed carbon alkyl chains were present in the acetone wash. Interaction energies calculated using dispersion corrected density functional theory show that atrazine is more strongly adsorbed to surfaces without weakly associated alkyl groups.


Subject(s)
Atrazine/chemistry , Charcoal/chemistry , Garbage , Models, Molecular , Refuse Disposal/methods , Soil Pollutants/chemistry , Adsorption , Atrazine/analysis , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Soil Pollutants/analysis
16.
Chemosphere ; 93(9): 1997-2003, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23920360

ABSTRACT

Aggregate structure of covalently functionalized chiral specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied employing static light scattering (SLS). Fractal dimensions (Df) of two specific chirality SWNTs-SG65 and SG76 with (6, 5) and (7, 6) chiral enrichments-were measured under four biological exposure media conditions, namely: Dulbecco's Modified Eagle Medium (DMEM), Minimum Essential Medium (MEM), Roswell Park Memorial Institute (RPMI) 1640 medium, and 0.9% saline solution. The SWNTs exhibited chiral dependence on Df with SG65 showing more fractal or loosely bound aggregate structures, i.e., lower Df values (range of 2.24±0.03 to 2.64±0.05), compared to the SG76 sample (range of 2.58±0.13 to 2.90±0.08). All the Df values reported are highly reproducible, measured from multiple SLS runs and estimated with 'random block-effects' statistical analysis that yielded all p values to be <0.001. The key mechanism for such difference in Df between the SWNT samples was identified as the difference in van der Waals (VDW) interaction energies of these samples, where higher VDW of SG76 resulted in tighter packing density. Effect of medium type showed lower sensitivity; however, presence of di-valent cations (Ca(2+)) in DMEM and MEM media resulted in relatively loose or more fractal aggregates. Moreover, presence of fetal bovine serum (FBS) and bovine serum albumin (BSA), used to mimic the in vitro cell culture condition, reduced the Df values, i.e., created more fractal structures. Steric hindrance to aggregation was identified as the key mechanism for creating the fractal structures. Also, increase in FBS concentration from 1% to 10% resulted in increasingly lower Df values.


Subject(s)
Fractals , Models, Chemical , Nanotubes, Carbon/chemistry , Serum Albumin, Bovine/chemistry
17.
Waste Manag ; 33(11): 2478-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23831005

ABSTRACT

Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes.


Subject(s)
Charcoal/chemical synthesis , Food Packaging , Garbage , Hot Temperature
18.
J Hazard Mater ; 254-255: 284-292, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23632042

ABSTRACT

Ultrasonic (US) and single-walled carbon nanotube (SWNT)-catalyzed ultrasonic (US/SWNT) degradation of a pharmaceutical (PhAC) mixture of acetaminophen (AAP) and naproxen (NPX) used as analgesics was carried out in water. In the absence of SWNTs, maximum degradations of AAP and NPX occurred at a high frequency (1000 kHz) and under acidic conditions (pH 3) and different solution temperatures (25 °C at 28 kHz and 35 °C at 1000 kHz) during US reactions. Rapid degradation of PhACs occurred within 10 min at 28 kHz (44.5% for AAP; 90.3% for NPX) and 1000 kHz (39.2% for AAP; 74.8% for NPX) at a SWNT concentration of 45 mgL(-1) under US/SWNT process, compared with 28 kHz (5.2% for AAP; 10.6% for NPX) and 1000 kHz (29.1% for AAP; 46.2% for NPX) under US process. Degradation was associated with the dispersion of SWNTs; small particles acted as nuclei during US reactions, enhancing the H2O2 production yield. NPX removal was greater than AAP removal under all US-induced reaction and SWNT adsorption conditions, which is governed by the chemical properties of PhACs. Based on the results, the optimal treatment performance was observed at 28 kHz with 45 mgL(-1) SWNTs (US/SWNT) within 10 min.


Subject(s)
Acetaminophen/chemistry , Nanotubes, Carbon/chemistry , Naproxen/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Analgesics/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Sonication
19.
Bioresour Technol ; 138: 180-90, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23612178

ABSTRACT

Studies have demonstrated that hydrothermal carbonization of biomass and waste streams results in the formation of beneficial materials/resources with minimal greenhouse gas production. Data necessary to understand how critical process conditions influence carbonization mechanisms, product formation, and associated environmental implications are currently lacking. The purpose of this work is to hydrothermally carbonize cellulose at different temperatures and to systematically sample over a 96-h period to determine how changes in reaction temperature influence product evolution. Understanding cellulose carbonization will provide insight to carbonization of cellulosic biomass and waste materials. Results from batch experiments indicate that the majority of cellulose conversion occurs between the first 0.5-4h, and faster conversion occurs at higher temperatures. Data collected over time suggest cellulose solubilization occurs prior to conversion. The composition of solids recovered after 96h is similar at all temperatures, consisting primarily of sp(2) carbons (furanic and aromatic groups) and alkyl groups.


Subject(s)
Carbon/pharmacology , Cellulose/metabolism , Temperature , Water/pharmacology , Charcoal/metabolism , Gases/chemistry , Magnetic Resonance Spectroscopy , Time Factors
20.
Environ Sci Technol ; 47(4): 1844-52, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23343128

ABSTRACT

Aggregation kinetics of chiral-specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied through time-resolved dynamic light scattering. Varied monovalent (NaCl) and divalent (CaCl(2)) electrolyte composition was used as background solution chemistry. Suwannee River humic acid (SRHA) was used to study the effects of natural organic matter on chirally separated SWNT aggregation. Increasing salt concentration and introduction of divalent cations caused aggregation of SWNT clusters by suppressing the electrostatic repulsive interaction from the oxidized surfaces. The (6,5) SWNTs, i.e., SG65, with relatively lower diameter tubes compared to (7,6), i.e., SG76, showed substantially higher stability (7- and 5-fold for NaCl and CaCl(2), respectively). The critical coagulation concentration (CCC) values were 96 and 13 mM NaCl in the case of NaCl and 2.8 and 0.6 mM CaCl(2) for SG65 and SG76, respectively. The increased tube diameter for (7,6) armchair SWNTs likely presented with higher van der Waals interaction and thus increased the aggregation propensity substantially. The presence of SRHA enhanced SWNT stability in divalent CaCl(2) environment through steric interaction from adsorbed humic molecules; however showed little or no effects for monovalent NaCl. The mechanism of aggregation-describing favorable interaction tendencies for (7,6) SWNTs-is probed through ab initio molecular modeling. The results suggest that SWNT stability can be chirality dependent in typical aquatic environment.


Subject(s)
Nanotubes, Carbon/chemistry , Electrophoretic Mobility Shift Assay , Humic Substances , Kinetics , Microscopy, Electron, Transmission , Spectrum Analysis , Stereoisomerism , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...