Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261659

ABSTRACT

Congenital human cytomegalovirus (HCMV) infection and HCMV infection of immunosuppressed patients cause significant morbidity and mortality, and vaccine development against HCMV is a major public health priority. HCMV envelope glycoproteins gB, gH, and gL, which constitute the core fusion machinery, play critical roles in HCMV fusion and entry into host cells. HCMV gB and gH/gL have been reported to elicit potent neutralizing antibodies. Recently, the gB/gH/gL complex was identified in the envelope of HCMV virions, and 16-50% of the total gH/gL bound to gB, forming the gB/gH/gL complex. These findings make the gB/gH/gL a unique HCMV vaccine candidate. We previously reported the production of HCMV trimeric gB and gH/gL heterodimers, and immunization with a combination of trimeric gB and gH/gL heterodimers elicited strong synergistic HCMV-neutralizing activity. To further improve the immunogenicity of gH/gL, we produced trimeric gH/gL. Rabbits immunized with HCMV trimeric gH/gL induced up to 38-fold higher serum titers of gH/gL-specific IgG relative to HCMV monomeric gH/gL, and elicited ~10-fold higher titers of complement-dependent and complement-independent HCMV-neutralizing activity for both epithelial cells and fibroblasts. HCMV trimeric gH/gL in combination with HCMV trimeric gB would be a novel promising HCMV vaccine candidate that could induce highly potent neutralizing activities.


Subject(s)
Antibodies, Neutralizing/immunology , Cytomegalovirus Vaccines/immunology , Viral Envelope Proteins/immunology , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Rabbits , Vaccines, Synthetic/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
2.
Oxid Med Cell Longev ; 2017: 8398072, 2017.
Article in English | MEDLINE | ID: mdl-28626499

ABSTRACT

Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI). While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.


Subject(s)
Brain/metabolism , Proteomics/methods , Animals , Male , Oxidative Stress , Swine
3.
J Immunol ; 196(9): 3677-85, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27029587

ABSTRACT

Intact, inactivated Streptococcus pneumoniae [including the unencapsulated S. pneumoniae, serotype 2 strain (R36A)] markedly inhibits the humoral immune response to coimmunized heterologous proteins, a property not observed with several other intact Gram-positive or Gram-negative bacteria. In this study, we determined the nature of this immunosuppressive property. Because phosphorylcholine (PC), a major haptenic component of teichoic acid in the S. pneumoniae cell wall, and lipoteichoic acid in the S. pneumoniae membrane were previously reported to be immunosuppressive when derived from filarial parasites, we determined whether R36A lacking PC (R36A(pc-)) was inhibitory. Indeed, although R36A(pc-) exhibited a markedly reduced level of inhibition of the IgG response to coimmunized chicken OVA (cOVA), no inhibition was observed when using several other distinct PC-expressing bacteria or a soluble, protein-PC conjugate. Further, treatment of R36A with periodate, which selectively destroys PC residues, had no effect on R36A-mediated inhibition. Because R36A(pc-) also lacks choline-binding proteins (CBPs) that require PC for cell wall attachment, and because treatment of R36A with trypsin eliminated its inhibitory activity, we incubated R36A in choline chloride, which selectively strips CBPs from its surface. R36A lacking CBPs lost most of its inhibitory property, whereas the supernatant of choline chloride-treated R36A, containing CBPs, was markedly inhibitory. Coimmunization studies using cOVA and various S. pneumoniae mutants, each genetically deficient in one of the CBPs, demonstrated that only S. pneumoniae lacking the CBP pneumococcal surface protein A lost its ability to inhibit the IgG anti-cOVA response. These results strongly suggest that PspA plays a major role in mediating the immunosuppressive property of S. pneumoniae.


Subject(s)
Bacterial Proteins/immunology , Immune Tolerance , Phosphorylcholine/immunology , Streptococcus pneumoniae/immunology , Animals , Bacterial Proteins/genetics , Immunization , Immunoglobulin G/immunology , Immunosuppressive Agents , Mice , Mutation , Ovalbumin/immunology , Periodic Acid/pharmacology , Phosphorylcholine/metabolism , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Trypsin/metabolism
4.
Front Neurol ; 6: 204, 2015.
Article in English | MEDLINE | ID: mdl-26441823

ABSTRACT

Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer's disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up--regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.

5.
Neurotoxicology ; 48: 180-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25825357

ABSTRACT

N-acetyl-aspartyl-glutamate (NAAG) is the most abundant neuropeptide in the mammalian brain. In a variety of animal models of brain injury, the administration of NAAG-related compounds, or inhibitors of glutamate carboxypeptidases (GCPs; the enzymes that hydrolyze NAAG), were shown to be neuroprotective. This study determined the impact of the administration of three NAAG-related compounds, NAAG, ß-NAAG (a NAAG homologue resistant to degradation), and 2-phosphonomethyl pentanedioic acid (2-PMPA; an inhibitor of GCP enzymes), on the neuropathology that develops following exposure to the nerve agent, soman. When given 1 min after soman exposure, NAAG-related drug treatments did not alter the survival rate or body weight loss seen 24 h after rats were exposed to soman. Likewise, brain levels of both NAAG and its metabolite, N-acetyl-aspartate (NAA), were substantially decreased 24 h after soman, and in particularly vulnerable brain regions the drug treatments were unable to attenuate the reduction in NAA and NAAG levels. Histochemical study indicated there was a dramatic increase in Fluoro-Jade C (FJC) staining, indicative of neuron cell death, 24 h after soman exposure. However, in the amygdala and in the entorhinal and piriform limbic cortex, which sustained severe neuropathology following soman intoxication, single or combined injections of NAAG compounds and 2-PMPA significantly reduced the number of FJC-positive cells, and effect size estimates suggest that in some brain regions the treatments were effective. The findings suggest that NAAG neurotransmission in the central nervous system is significantly altered by soman exposure, and that the administration of NAAG-related compounds and 2-PMPA reduces neuron cell death in brain regions that sustain severe damage.


Subject(s)
Brain/drug effects , Carboxypeptidases/antagonists & inhibitors , Chemical Warfare Agents , Dipeptides/pharmacology , Enzyme Inhibitors/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Organophosphate Poisoning/prevention & control , Organophosphorus Compounds/pharmacology , Soman , Animals , Brain/enzymology , Brain/pathology , Carboxypeptidases/metabolism , Cell Death/drug effects , Chromatography, High Pressure Liquid , Dipeptides/metabolism , Disease Models, Animal , Male , Neurons/enzymology , Neurons/pathology , Organophosphate Poisoning/enzymology , Organophosphate Poisoning/pathology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors
6.
J Virol ; 86(21): 11457-71, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22915804

ABSTRACT

The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are paramyxoviruses discovered in the mid- to late 1990s that possess a broad host tropism and are known to cause severe and often fatal disease in both humans and animals. HeV and NiV infect cells by a pH-independent membrane fusion mechanism facilitated by their attachment (G) and fusion (F) glycoproteins. Here, several soluble forms of henipavirus F (sF) were engineered and characterized. Recombinant sF was produced by deleting the transmembrane (TM) and cytoplasmic tail (CT) domains and appending a glycosylphosphatidylinositol (GPI) anchor signal sequence followed by GPI-phospholipase D digestion, appending a trimeric coiled-coil (GCNt) domain (sF(GCNt)), or deleting the TM, CT, and fusion peptide domain. These sF glycoproteins were produced as F(0) precursors, and all were apparent stable trimers recognized by NiV-specific antisera. Surprisingly, however, only the GCNt-appended constructs (sF(GCNt)) could elicit cross-reactive henipavirus-neutralizing antibody in mice. In addition, sF(GCNt) constructs could be triggered in vitro by protease cleavage and heat to transition from an apparent prefusion to postfusion conformation, transitioning through an intermediate that could be captured by a peptide corresponding to the C-terminal heptad repeat domain of F. The pre- and postfusion structures of sF(GCNt) and non-GCNt-appended sF could be revealed by electron microscopy and were distinguishable by F-specific monoclonal antibodies. These data suggest that only certain sF constructs could serve as potential subunit vaccine immunogens against henipaviruses and also establish important tools for further structural, functional, and diagnostic studies on these important emerging viruses.


Subject(s)
Henipavirus/immunology , Henipavirus/ultrastructure , Viral Fusion Proteins/immunology , Viral Fusion Proteins/ultrastructure , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , HeLa Cells , Henipavirus/genetics , Humans , Mice , Microscopy, Electron , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
7.
Biophys J ; 95(10): 4879-89, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18723589

ABSTRACT

The opening of the Alzheimer's Abeta channel permits the flux of calcium into the cell, thus critically disturbing intracellular ion homeostasis. Peptide segments that include the characteristic histidine (His) diad, His(13) and His(14), efficiently block the Abeta channel activity, blocking Abeta cytotoxicity. We hypothesize that the vicinal His-His peptides coordinate with the rings of His in the mouth of the pore, thus blocking the flow of calcium ions through the channel, with consequent blocking of Abeta cytotoxicity. To test this hypothesis, we studied Abeta ion channel activity and cytotoxicity after the addition of compounds that are known to have His association capacity, such as Ni(2+), imidazole, His, and a series of His-related compounds. All compounds were effective at blocking both Abeta channel and preventing Abeta cytotoxicity. The efficiency of protection of His-related compounds was correlated with the number of imidazole side chains in the blocker compounds. These data reinforce the premise that His residues within the Abeta channel sequence are in the pathway of ion flow. Additionally, the data confirm the contribution of the Abeta channel to the cytotoxicity of exogenous Abeta.


Subject(s)
Amyloid beta-Peptides/physiology , Cell Survival/drug effects , Histidine/administration & dosage , Ion Channel Gating/physiology , Neurons/drug effects , Neurons/metabolism , Animals , Cells, Cultured , Ion Channel Gating/drug effects , Neurons/cytology , Rats
8.
Exp Biol Med (Maywood) ; 232(1): 146-55, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17202595

ABSTRACT

Luteinizing hormone-releasing hormone (LHRH) was first isolated in the mammalian hypothalamus and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotropin release. Since its discovery, this form of LHRH (LHRH-I) has been shown to be one of many structural variants with a variety of roles in both the brain and peripheral tissues. Enormous interest has been focused on LHRH-I, LHRH-II, and their cognate receptors as targets for designing therapies to treat cancers of the reproductive system. LHRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15) that cleaves the hormone at the Tyr(5)-Gly(6) bond. We have previously reported that the autoregulation of LHRH gene expression can also be mediated by its processed peptide, LHRH-(1-5). Given its importance in the brain, we have investigated the role of the specific processed peptide of LHRH-I, LHRH-(1-5), within Ishikawa cells, a human endometrial cell line. Using real-time polymerase chain reaction, we observed that LHRH-(1-5) upregulates LHRH-II mRNA expression in Ishikawa cells but does not exert any influence on LHRH-I mRNA levels. This is in contrast to the effects of LHRH-I, which affects the expression of LHRH-I mRNA. Our findings support a potential role for LHRH-(1-5) as a processed metabolite in the endometrium. Further investigations are needed to determine the role of this processed metabolite and to identify specific pathways involved in LHRH-(1-5) signaling.


Subject(s)
Endometrium/physiology , Gene Expression Regulation , Gonadotropin-Releasing Hormone/analogs & derivatives , Peptide Fragments/physiology , Cell Line, Tumor , Female , Gonadotropin-Releasing Hormone/biosynthesis , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/physiology , Humans , Pyrrolidonecarboxylic Acid/analogs & derivatives , RNA, Messenger/analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
9.
Thyroid ; 15(4): 320-5, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15876153

ABSTRACT

Mortality is low for young patients (younger than 21 years) with papillary thyroid cancer (PTC), and different mutations might contribute to this. Previous studies detected ret/PTC rearrangements more frequently in PTC from children than adults, and recent reports describe a high incidence of BRAF T1796A transversion in adult PTC. However, BRAF mutations have not been adequately studied in PTC from young patients. We amplified and sequenced segments of the BRAF gene spanning the T1796A transversion site in 14 PTC from patients 10-21 years of age (mean, 17.5 +/- 3.5 years). The PTC (7 = class 1; 5 = class 2; 1 = class 3) ranged from 0.7-2.9 cm in diameter (mean, 1.4 +/- 0.75 cm). None of them (0/14) contained BRAF T1796A and none recurred (mean follow-up, 66 +/- 40 months). This incidence of BRAF T1796A is significantly less than that reported for adult PTC (270/699, 38.6%, p = 0.0015) in several series. None of our PTC (0/10) contained ras mutations, but 7/12 (58%) contained ret/PTC rearrangements. We conclude that BRAF mutations are less common in PTC from young patients, and ret/PTC rearrangements were the most common mutation found in these childhood PTC.


Subject(s)
Carcinoma, Papillary/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Adolescent , Adult , Child , Female , Gene Rearrangement , Humans , Male , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics
10.
Cell Immunol ; 232(1-2): 64-74, 2004.
Article in English | MEDLINE | ID: mdl-15922717

ABSTRACT

Double- and single-stranded oligodeoxynucleotides containing unmethylated cytosine-guanosine (CpG) dinucleotides (CpG-ODN) activate immune cells via TLR9. In this report we synthesized hybrid DNA-RNA molecules (HDR) in order to further explore the structure-immune function relationship of CpG-ODN in TLR9 signaling and the potential immunomodulatory properties of RNA. We demonstrate that replacement of the deoxyadenosine flanking sequences, critical for the immune activating properties of CpG-ODN, with a similar number of adenosines, although not guanosines, cytosines, or uracils, maintains complete immunostimulatory activity of the hybrid oligonucleotide in vitro, whereas a similar RNA replacement of even 1 base of the required unmethylated 6 base DNA motif (purine-purine-CpG-pyrimidine-pyrimidine) results in a complete loss of activity. Regardless of whether the critical flanking sequence was RNA or DNA there was no significant change in the quantitative or qualitative immune-stimulating activity, or TLR-specificity of the resulting sequences, thus underscoring the relatively permissive functional role of the flanking sequence, and the more specific role of the motif in mediating TLR9 signaling. These data further support a potential role for RNA in immunomodulation.


Subject(s)
DNA-Binding Proteins/drug effects , DNA/chemistry , Oligodeoxyribonucleotides/pharmacology , RNA/chemistry , Receptors, Cell Surface/drug effects , Animals , Base Pairing , Base Sequence , Cell Proliferation/drug effects , Cytokines/drug effects , Cytokines/immunology , Cytokines/metabolism , DNA/immunology , DNA-Binding Proteins/immunology , Dose-Response Relationship, Drug , Kinetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nucleic Acid Heteroduplexes/chemical synthesis , Nucleic Acid Heteroduplexes/immunology , Nucleic Acid Heteroduplexes/pharmacology , Oligodeoxyribonucleotides/chemical synthesis , Oligodeoxyribonucleotides/immunology , RNA/immunology , Receptors, Cell Surface/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Structure-Activity Relationship , Toll-Like Receptor 9
11.
J Virol ; 76(22): 11186-98, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12388678

ABSTRACT

Nipah virus (NiV) and Hendra virus (HeV) are novel paramyxoviruses from pigs and horses, respectively, that are responsible for fatal zoonotic infections of humans. The unique genetic and biological characteristics of these emerging agents has led to their classification as the prototypic members of a new genus within the Paramyxovirinae subfamily called HENIPAVIRUS: These viruses are most closely related to members of the genus Morbillivirus and infect cells through a pH-independent membrane fusion event mediated by the actions of their attachment (G) and fusion (F) glycoproteins. Understanding their cell biological features and exploring the functional characteristics of the NiV and HeV glycoproteins will help define important properties of these emerging viruses and may provide new insights into paramyxovirus membrane fusion mechanisms. Using a recombinant vaccinia virus system and a quantitative assay for fusion, we demonstrate NiV glycoprotein function and the same pattern of cellular tropism recently reported for HeV-mediated fusion, suggesting that NiV likely uses the same cellular receptor for infection. Fusion specificity was verified by inhibition with a specific antiserum or peptides derived from the alpha-helical heptads of NiV or HeV F. Like that of HeV, NiV-mediated fusion also requires both F and G. Finally, interactions between the glycoproteins of the paramyxoviruses have not been well defined, but here we show that the NiV and HeV glycoproteins are capable of highly efficient heterotypic functional activity with each other. However, no heterotypic activity was observed with envelope glycoproteins of the morbilliviruses Measles virus and Canine distemper virus.


Subject(s)
Membrane Fusion , Paramyxovirinae/pathogenicity , Viral Envelope Proteins/metabolism , Animals , Cats , Cell Line , Chick Embryo , Cricetinae , Giant Cells , HeLa Cells , Humans , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Viral Envelope Proteins/genetics
12.
J Virol ; 76(2): 644-55, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11752155

ABSTRACT

The human serum human immunodeficiency virus type 1 (HIV-1)-neutralizing serum 2 (HNS2) neutralizes many primary isolates of different clades of HIV-1, and virus expressing envelope from the same donor, clone R2, is neutralized cross-reactively by HIV-immune human sera. The basis for this cross-reactivity was investigated. It was found that a rare mutation in the proximal limb of variable region 3 (V3), 313-4 PM, caused virus pseudotyped with the R2 envelope to be highly sensitive to neutralization by monoclonal antibodies (MAbs) directed against conformation-sensitive epitopes at the tip of the V3 loop, such as 19b, and moderately sensitive to MAbs against CD4 binding site (CD4bs) and CD4-induced (CD4i) epitopes, soluble CD4 (sCD4), and HNS2. In addition, introduction of this sequence by mutagenesis caused enhanced sensitivity to neutralization by 19b, anti-CD4i MAb, and HNS2 in three other primary HIV-1 envelopes and by anti-CD4bs MAb and sCD4 in one of the three. The 313-4 PM sequence also conferred increased infectivity for CD4(+) CCR5(+) cells and the ability to infect CCR5(+) cells upon all of these four and two of these four HIV-1 envelopes, respectively. Neutralization of R2 by HNS2 was substantially inhibited by the cyclized R2 V3 35-mer synthetic peptide. Similarly, the peptide also had some lesser efficacy in blocking neutralization of R2 by other sera or of neutralization of other primary viruses by HNS2. Together, these results indicate that the unusual V3 mutation in the R2 clone accounts for its uncommon neutralization sensitivity phenotype and its capacity to mediate CD4-independent infection, both of which could relate to immunogenicity and the neutralizing activity of HNS2. This is also the first primary HIV-1 isolate envelope glycoprotein found to be competent for CD4-independent infection.


Subject(s)
Cross Reactions/immunology , Gene Products, env/immunology , HIV Antibodies/immunology , HIV Antigens/immunology , HIV-1/immunology , Mutation/genetics , Neutralization Tests , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , CD4 Antigens/physiology , Cell Line , Cyclization , DNA, Recombinant/genetics , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Products, env/chemistry , Gene Products, env/genetics , HIV Antigens/chemistry , HIV Antigens/genetics , HIV-1/chemistry , HIV-1/genetics , HIV-1/physiology , Humans , Immune Sera/immunology , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Fragments/immunology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...