Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int Arch Occup Environ Health ; 87(7): 793-9, 2014.
Article in English | MEDLINE | ID: mdl-24370553

ABSTRACT

OBJECTIVES: Analytical difficulties and lack of a biological exposure index and reference values have prevented using unmetabolized urinary benzene (UB) excretion as a biomarker of low-level environmental exposure. To explore what environmental factors beyond active smoking may contribute to environmental exposure to benzene, we monitored UB excretion in a non-smoking, non-occupationally exposed sample of the general population. METHODS: Two spot urine samples were obtained from 86 non-smoking, non-occupationally exposed subjects, selected among a random sample of the general population of the metropolitan area of Cagliari (Sardinia, Italy), at 8:00 a.m. (UBm) and 8:00 p.m. (UBe). UB was measured by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry analysis. Questionnaire information on personal and environmental exposures during the sampling day was gathered with personal interviews. Multivariate analysis of variance and multiple regression model were applied to investigate the role of such variables on the level of UB. RESULTS: The ninety-fifth percentile of UBe in this population was 311.5 ng/L, which is tentatively proposed as the UB guidance value for unexposed populations. UBm and urban residence were the only predictors of a significant increase in UBe excretion. Self-reported residential vehicular traffic will not account for the excess median value among urban residents; commuting time among urban residents showed a suggestive nonsignificant linear correlation with UBe, but the small sample size prevented reliable inference to be drawn. Age, environmental tobacco smoking, employment status and body mass index did not affect UB excretion. CONCLUSIONS: Our findings support the use of unmetabolized UB as a specific and sensitive biomarker of low-level environmental exposure to benzene.


Subject(s)
Air Pollutants/urine , Benzene/analysis , Environmental Exposure/analysis , Adult , Aged , Air Pollutants/analysis , Environmental Monitoring , Female , Gas Chromatography-Mass Spectrometry , Humans , Italy , Male , Middle Aged , Residence Characteristics , Seasons , Sex Factors , Socioeconomic Factors
2.
Int J Environ Health Res ; 23(1): 58-65, 2013.
Article in English | MEDLINE | ID: mdl-22769047

ABSTRACT

We mapped leukemia risk among children and youths in the Azuay province, Rio Paute river basin, Ecuador, in 2000-2010, using a Bayesian disease mapping model. We assessed the comprehensiveness of the list of leukemia cases from the Sociedad de Lucha contra el Càncer en el Ecuador (SOLCA) Hospital in Cuenca, the only referral center for oncology in the whole Rio Paute area, by comparison to the Quito cancer registry. Risk of leukemia did not vary significantly by canton within the Azuay province. However, a moderate increase in risk of borderline statistical significance was observed in the city of Cuenca and particularly among males in a heavily industrialized parish, who had an almost eight-fold excess (95% CI 3.03, 20.39, p = 0.01) of AML. Analytical studies are warranted to properly address specific etiological factor of leukemia among children and youths of the Azuay province of Ecuador.


Subject(s)
Leukemia/epidemiology , Adolescent , Age Factors , Bayes Theorem , Child , Child, Preschool , Ecuador/epidemiology , Humans , Incidence , Infant , Leukemia/etiology , Male , Risk Assessment , Sex Factors , Young Adult
3.
Med Lav ; 103(5): 338-46, 2012.
Article in English | MEDLINE | ID: mdl-23077794

ABSTRACT

INTRODUCTION: Conflicting opinions exist about the reliability of biomarkers of low-level exposure to benzene. We compared the ability of the urinary excretion of trans,trans-muconic acid (t,t-MA), s-phenilmercapturic acid (s-PAMA) and urinary benzene (U-Benz) to detect low level occupational and environmental exposure to benzene. METHODS: We monitored airborne benzene by personal air sampling, and U-Benz, s-PMAI, t,t-MA and cotinine (U-Cotinine) in spot urine samples, collected at 8 am and 8 pm, in 32 oil refinery workers and 65 subjects, randomly selected among the general population of urban and suburban Cagliari, Italy. Information on personal characteristics, diet and events during the sampling day was acquired through in person interviews. RESULTS: The median concentration of airborne benzene was 25.2 microg/m3 in oil refinery workers, and 8.5 microg/m3 in the general population subgroup. U-Benz in morning and evening samples was significantly more elevated among oil refinery workers than the general population subgroup (p = 0.012, and p = 7.4 x 10(-7), respectively) and among current smokers compared to non-smokers (p = 5.2 x 10(-8), and p = 5.2 x 10(-5) respectively). Benzene biomarkers and their readings in the two sampling phases were well correlated to each other. The Spearman's correlation coefficient with airborne benzene was significant for U-Benz in the evening sample, while no correlation was seen with t,t-MA and s-PMA readings in either samplings. The two benzene metabolites were frequently below limit of detection (LOD), particularly among the general population study subjects (17-9% and 39%, for t,t-MA and s-PMA respectively). Morning U-Cotinine excretion showed a good correlation with U-Benz in the morning and in the evening sampling (p < 0.001), and with s-PMA in the evening sample (p < 0.001), but not with t,t-MA in either samplings. t,t-MA in the evening sample was the only biomarker showing a moderate inverse correlation with BMI (p < 0.05). The multiple regression analysis adjusting by BMI and number of cigarettes smoked during the day confirmed the results of the univariate analysis. DISCUSSION: Our results suggest that unmetabolized U-Benz would allow a more reliable biomonitoring of low-level exposure to benzene than s-PMA and t,t-MA.


Subject(s)
Air Pollutants, Occupational/analysis , Air Pollutants/analysis , Benzene/analysis , Chemical Industry , Environmental Monitoring , Fuel Oils , Inhalation Exposure/analysis , Occupational Exposure/analysis , 8-Hydroxy-2'-Deoxyguanosine , Acetylcysteine/analogs & derivatives , Acetylcysteine/urine , Adult , Aged , Air Pollutants/pharmacokinetics , Air Pollutants, Occupational/pharmacokinetics , Benzene/pharmacokinetics , Biomarkers , Cotinine/urine , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/urine , Female , Guanine/analogs & derivatives , Guanine/urine , Guanosine/analogs & derivatives , Guanosine/urine , Humans , Italy , Male , Middle Aged , Osmolar Concentration , Sensitivity and Specificity , Smoking/epidemiology , Sorbic Acid/analogs & derivatives , Sorbic Acid/analysis , Suburban Population , Time Factors , Urban Population
4.
G Ital Med Lav Ergon ; 33(3 Suppl): 39-42, 2011.
Article in Italian | MEDLINE | ID: mdl-23393796

ABSTRACT

INTRODUCTION: Conflicting opinions exist about urinary benzene (UB) as a reliable biomarker of exposure. Objective of our study is to evaluate the effect of low-level environmental exposure on UB levels. METHODS: We monitored UB excretion in 74 non-smoking non- occupationally exposed subjects; a questionnaire interview gathered information on relevant exposures during the day of monitoring. RESULTS: UB excretion was related (p < 0.05) to gender, sampling time, residence, and reported vehicular traffic, but not to passive smoking and body mass index. CONCLUSION: Our findings support the use of unmetabolized UB as a specific and sensitive biomarker of low-level exposure to benzene.


Subject(s)
Benzene/analysis , Environmental Exposure , Environmental Monitoring , Benzene/administration & dosage , Female , Humans , Male , Urine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...