Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 10: 222, 2016.
Article in English | MEDLINE | ID: mdl-27303256

ABSTRACT

Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood.

2.
Int Rev Neurobiol ; 115: 155-201, 2014.
Article in English | MEDLINE | ID: mdl-25131545

ABSTRACT

During the last decade and a half, there has been an explosion of data regarding epigenetic changes in schizophrenia. Most initial studies have suggested that schizophrenia is characterized by an overly restrictive chromatin state based on increases in transcription silencing histone modifications and DNA methylation at schizophrenia candidate gene promoters and increases in the expression of enzymes that catalyze their formation. However, recent studies indicate that the pathology is more complex. This complexity may greatly impact pharmacological approaches directed at targeting epigenetic abnormalities in schizophrenia. The current review explores epigenetic studies of schizophrenia and what this can tell us about the underlying pathophysiology. We hypothesize based on recent studies that it is also plausible that drugs that further restrict chromatin may be efficacious.


Subject(s)
Epigenesis, Genetic/physiology , Schizophrenia/genetics , Schizophrenia/physiopathology , Animals , CpG Islands/genetics , DNA Methylation , Humans
3.
Neurobiol Learn Mem ; 90(1): 90-102, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18289890

ABSTRACT

An automated training system was used to compare the behavior of knockout (KO) mice lacking the fragile X mental retardation protein with that of wild-type (WT) mice (C57Bl/6 strain) in the acquisition and retention of olfactory discriminations. KO and WT mice did not differ in the acquisition of a four-stage nose poke shaping procedure. In two separate experiments, mutant mice required substantially more training to acquire a series of novel olfactory discrimination problems than did control mice. The KO mice required significantly more sessions to reach criterion performance, made significantly more errors during training, and more often failed to acquire discriminations. Both KO and WT mice showed similar error patterns when learning novel discriminations and both groups showed evidence of more rapid learning of later discriminations in the problem series. Both groups showed significant long-term memory two or four weeks after training but WT and KO mice did not differ in this regard. A group of well-trained mice were given training on novel odors in sessions limited to 20-80 trials. Memory of these problems at two day delays did not differ between WT and KO mice. Tests using ethyl acetate demonstrated that WT and KO mice had similar odor detection thresholds.


Subject(s)
Discrimination Learning/physiology , Fragile X Mental Retardation Protein/genetics , Intellectual Disability/physiopathology , Memory/physiology , Smell/physiology , Acetates , Animals , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism , Intellectual Disability/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Odorants , Reaction Time/physiology
4.
Mol Pharmacol ; 71(4): 1179-84, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17296805

ABSTRACT

Activation of substance P receptors, which are coupled to Galpha(q), inhibits the Kir3.1/3.2 channels, resulting in neuronal excitation. We have shown previously that this channel inactivation is not caused by reduction of the phosphatidylinositol 4,5-bisphosphate level in membrane. Moreover, Galpha(q) immunoprecipitates with Kir3.2 (J Physiol 564:489-500, 2005), suggesting that Galpha(q) interacts with Kir3.2. Positive immunoprecipitation, however, does not necessarily indicate direct interaction between the two proteins. Here, the glutathione transferase pull-down assay was used to investigate interaction between Galpha(q) and the K(+) channels. We found that Galpha(q) interacted with N termini of Kir3.1, Kir3.2, and Kir3.4. However, Galpha(q) did not interact with the C terminus of any Kir3 or with the C or N terminus of Kir2.1. TRPC6 is regulated by the signal initiated by Galpha(q). Immunoprecipitation, however, showed that Galpha(q) did not interact with TRPC6. Thus, the interaction between Galpha(q) and the Kir3 N terminus is quite specific. This interaction occurred in the presence of GDP or GDP-AlF(-)(4). The Galpha(q) binding could take place somewhere between residues 51 to 90 of Kir3.2; perhaps the segment between 81 to 90 residues is crucial. Gbetagamma, which is known to bind to N terminus of Kir3, did not compete with Galpha(q) for the binding, suggesting that these two binding regions are different. These findings agree with the hypothesis (J Physiol 564:489-500, 2005) that the signal to inactivate the Kir3 channel could be mainly transmitted directly from Galpha(q) to Kir3.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Potassium Channels, Inwardly Rectifying/metabolism , Protein Binding , Rats , TRPC Cation Channels/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...