Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 9(36): 7204-7209, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30746111

ABSTRACT

Synthetic control of the crystal field has elevated lanthanides to the forefront of single-molecule magnet (SMM) research, yet the resultant strong, predictable single-ion anisotropy has thus far not translated into equally impressive molecule-based magnets of higher dimensionality. This roadblock arises from the dual demands made of the crystal field: generate anisotropy and facilitate magnetic coupling. Here we demonstrate that particular metal-ligand pairs can dominate the single-ion electronic structure so fully that the remaining coordination sphere plays a minimal role in the magnitude and orientation of the magnetic anisotropy. This Metal-Ligand Pair Anisotropy (MLPA) effectively separates the crystal field into discrete components dedicated to anisotropy and magnetic coupling. To demonstrate an MLPA building unit, we synthesized four new mononuclear complexes that challenge the electronic structure of the iconic lanthanocene ([Ln(COT)2]+; COT2- = cyclooctatetraene dianion) complex which is known to generate strong anisotropy with Ln = Er3+. Variation in symmetry and coordination strength for Er(COT)I(THF)2 (THF = tetrahydrofuran) (1), Er(COT)I(Py)2 (Py = pyridine) (2), Er(COT)I(MeCN)2 (MeCN = acetonitrile) (3), and Er(COT)(Tp*) (Tp* = tris(3,5-dimethyl-1-pyrazolyl)borate) (4) shows that the Er-COT unit stabilizes anisotropy despite deliberate de-optimization. All four half-sandwich complexes display SMM behavior with effective energy barriers of U eff = 95.6(9), 102.9(3.1), 107.1(1.3), and 133.6(2.2) cm-1 for 1-4 by a multi-relaxation-process fitting. More importantly, the basic state splittings remain intact and the anisotropy axes are within several degrees of normal to the COT2- ring according to complete active space self-consistent field (CASSCF) calculations. Further investigation of the MLPA conceptual framework is warranted as it can provide building units with well-defined magnetic orientation and strength. We envision that the through-barrier processes observed herein, such as quantum tunneling, can be mitigated by formation of larger clusters and molecule-based materials.

2.
Chem Commun (Camb) ; 53(53): 7322-7324, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28487927

ABSTRACT

We present the first ferromagnetically-coupled Er3+ complex with linked, high-anisotropy Er-COT (COT2- = cyclooctatetraene dianion) subunits. The dinuclear complex, [Er(µ2-Cl)(COT)(THF)]2, demonstrates single-molecule magnetism with a single, zero-field magnetization relaxation barrier of Ueff = 113 cm-1. This system offers evidence that anisotropy can be preserved in the presence of ferromagnetic linking of the Er-COT subunits, providing a rational means to build strong molecular magnets of tunable dimensionality.

3.
J Parasitol ; 82(4): 616-23, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8691370

ABSTRACT

The phylogenetic position of the phylum Haplosporidia was investigated with the complete small subunit rRNA gene sequences from 5 species in the phylum: Haplosporidium nelsoni and Haplosporidium costale, parasites of the eastern oyster Crassostrea virginica; Haplosporidium louisiana, a parasite of the mudcrab Panopeus herbstii; Minchinia teredinis, a parasite of shipworms (Teredo spp.) and Urosporidium crescens, a hyperparasite found in metacercariae of the trematode Megalophallus sp. in the blue crab, Callinectes sapidus. Multiple alignments of small subunit rRNA gene sequences included the 5 haplosporidian taxa and 14 taxa in the alveolate phyla Ciliophora, Dinoflagellida, and Apicomplexa. Maximum parsimony analysis placed the phylum Haplosporidia as a monophyletic group within the alveolate clade, as a taxon of equal rank with the other 3 alveolate phyla, and as a sister taxon to the clade composed of the phyla Dinoflagellida and Apicomplexa. Transversionally weighted parsimony placed the haplosporidians as a sister taxon to the ciliates. A separate analysis focused on the relationships of species in the genus Haplosporidium. Analyses were conducted with the haplosporidians as a functional ingroup, using each of the alveolate phyla individually as functional outgroups. The results indicated that species in the genus Haplosporidium do not form a monophyletic assemblage. As such, the present morphological criteria for distinguishing the genera Haplosporidium and Minchinia are insufficient.


Subject(s)
DNA, Protozoan/chemistry , DNA, Ribosomal/chemistry , Eukaryota/classification , Phylogeny , RNA, Ribosomal/genetics , Animals , Base Sequence , Brachyura/parasitology , Eukaryota/genetics , Eukaryota/ultrastructure , Molecular Sequence Data , RNA, Protozoan/genetics , Sequence Alignment , Spores/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...