Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Res Sq ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39149473

ABSTRACT

Disruption of sleep and circadian rhythms are a comorbid feature of many pathologies, and can negatively influence many health conditions, including neurodegenerative disease, metabolic illness, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. The interaction between sleep and/or circadian rhythms with the use of Alternative Polyadenylation (APA) has been largely undescribed, particularly in the context of other disorders. APA is a process that generates various transcript isoforms of the same gene affecting its mRNA translation, stability, localization, and subsequent function. Here we identified unique APAs expressed in rat brain over time-of-day, immediately following sleep deprivation, and the subsequent recovery period. From these data, we performed a secondary analysis of these sleep- or time-of-day associated PASs with recently described APA-linked human brain disorder susceptibility genes.

2.
Res Sq ; 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38313253

ABSTRACT

Sleep and circadian rhythm disruptions are comorbid features of many pathologies and can negatively influence numerous health conditions, including degenerative diseases, metabolic illnesses, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. Thus, associations between sleep and/or circadian rhythm and alternative polyadenylation (APA), particularly in the context of other health challenges, are largely undescribed. APA is a process that generates various transcript isoforms from the same gene, resulting in effects on mRNA translation, stability, localization, and subsequent function. Here, we have identified unique APAs in rat brain that exhibit time-of-day-dependent oscillations in expression as well as APAs that are altered by sleep deprivation and the subsequent recovery period. Genes affected by APA usage include Mapt/Tau, Ntrk2, Homer1A, Sin3band Sorl. Sorl1 has two APAs which cycle with a 24 h period, one additional APA cycles with a 12 h period and one more that is reduced during recovery sleep. Finally, we compared sleep- or circadian-associated APAs with recently described APA-linked brain disorder susceptibility genes and found 46 genes in common.

3.
Front Syst Neurosci ; 17: 1212213, 2023.
Article in English | MEDLINE | ID: mdl-37404868

ABSTRACT

Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.

4.
Front Neurosci ; 16: 798994, 2022.
Article in English | MEDLINE | ID: mdl-35844236

ABSTRACT

Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.

5.
Sleep ; 45(5)2022 05 12.
Article in English | MEDLINE | ID: mdl-35554595

ABSTRACT

The cellular consequences of sleep loss are poorly characterized. In the pyramidal neurons of mouse frontal cortex, we found that mitochondria and secondary lysosomes occupy a larger proportion of the cytoplasm after chronic sleep restriction compared to sleep, consistent with increased cellular burden due to extended wake. For each morphological parameter, the within-animal variance was high, suggesting that the effects of sleep and sleep loss vary greatly among neurons. However, the analysis was based on 4-5 mice/group and a single section/cell. Here, we applied serial block-face scanning electron microscopy to identify signatures of sleep and sleep loss in the Drosophila brain. Stacks of images were acquired and used to obtain full 3D reconstructions of the cytoplasm and nucleus of 263 Kenyon cells from adult flies collected after a night of sleep (S) or after 11 h (SD11) or 35 h (SD35) of sleep deprivation (9 flies/group). Relative to S flies, SD35 flies showed increased density of dark clusters of chromatin and Golgi apparata and a trend increase in the percent of cell volume occupied by mitochondria, consistent with increased need for energy and protein supply during extended wake. Logistic regression models could assign each neuron to the correct experimental group with good accuracy, but in each cell, nuclear and cytoplasmic changes were poorly correlated, and within-fly variance was substantial in all experimental groups. Together, these results support the presence of ultrastructural signatures of sleep and sleep loss but underscore the complexity of their effects at the single-cell level.


Subject(s)
Diptera , Wakefulness , Animals , Frontal Lobe , Mice , Sleep/physiology , Sleep Deprivation , Wakefulness/physiology
6.
Neuroglia ; 3(2): 73-83, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36909794

ABSTRACT

Humans with post-traumatic stress disorder (PTSD) exhibit sleep disturbances that include insomnia, nightmares, and enhanced daytime sleepiness. Sleep disturbances are considered a hallmark feature of PTSD; however, little is known about the cellular and molecular mechanisms regulating trauma-induced sleep disorders. Using a rodent model of PTSD called "Single Prolonged Stress" (SPS) we examined the requirement of the brain-type fatty acid binding protein Fabp7, an astrocyte expressed lipid-signaling molecule, in mediating trauma-induced sleep disturbances. We measured baseline sleep/wake parameters and then exposed Fabp7 knock-out (KO) and wild-type (WT) C57BL/6N genetic background control animals to SPS. Sleep and wake measurements were obtained immediately following the initial trauma exposure of SPS, and again 7 days later. We found that active-phase (dark period) wakefulness was similar in KO and WT at baseline and immediately following SPS; however, it was significantly increased after 7 days. These effects were opposite in the inactive-phase (light period), where KOs exhibited increased wake in baseline and following SPS, but returned to WT levels after 7 days. To examine the effects of Fabp7 on unconditioned anxiety following trauma, we exposed KO and WT mice to the light-dark box test before and after SPS. Prior to SPS, KO and WT mice spent similar amounts of time in the lit compartment. Following SPS, KO mice spent significantly more time in the lit compartment compared to WT mice. These results demonstrate that mutations in an astrocyte-expressed gene (Fabp7) influence changes in stress-dependent sleep disturbances and associated anxiety behavior.

7.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884544

ABSTRACT

Parkinson's Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (GBA). Mutations in GBA also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms. Therefore, identifying therapeutic strategies that improve the phenotypic traits associated with GD/PD in animal models may provide an opportunity for treating neurological manifestations of GD/PD. Thiazolidinediones (TZDs, also called glitazones) are a class of compounds targeted for the treatment of type 2 diabetes, and have also shown promise for the treatment of neurodegenerative disease, including PD. Here, we tested the efficacy of glitazone administration during development in a fly GD model with deletions in the GBA homolog, dGBA1b (GBA1ΔTT/ΔTT). We observed an optimal dose of pioglitazone (PGZ) at a concentration of 1 µM that reduced sleep deficits, locomotor impairments, climbing defects, and restoration of normal protein levels of Ref(2)P, a marker of autophagic flux, in GBA1ΔTT/ΔTT mutant flies, compared to GBA1+/+ control flies. These data suggest that PGZ may represent a potential compound with which to treat GD/PD by improving function of lysosomal-autophagy pathways, a cellular process that removes misfolded or aggregated proteins.


Subject(s)
Gaucher Disease/drug therapy , Glucosylceramidase/deficiency , Parkinson Disease/drug therapy , Thiazolidinediones/pharmacology , Animals , Drosophila melanogaster , Gaucher Disease/etiology , Gaucher Disease/pathology , Humans , Male , Parkinson Disease/etiology , Parkinson Disease/pathology , Phenotype
8.
Article in English | MEDLINE | ID: mdl-34056625

ABSTRACT

The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including Fabp7. We confirmed that Rev-erbα binds to the Fabp7 promoter in multiple brain areas, including hippocampus, hypothalamus, and VTA, and showed that Fabp7 gene expression is upregulated in Rev-erbα knock-out mice. Compared to Fabp7 mRNA levels, Fabp3 and Fabp5 mRNA were unaffected by Rev-erbα depletion in hippocampus, suggesting that these effects are specific to Fabp7. To determine whether these effects of Rev-erbα depletion occur broadly throughout the brain, we also evaluated Fabp mRNA expression levels in multiple brain areas, including cerebellum, cortex, hypothalamus, striatum, and VTA in Rev-erbα knock-out mice. While small but significant changes in Fabp5 mRNA expression exist in some of these areas, the magnitude of these effects are minimal to that of Fabp7 mRNA expression, which was over 6-fold across all brain regions. These studies suggest that Rev-erbα is a transcriptional repressor of Fabp7 gene expression throughout mammalian brain.

9.
Genetics ; 172(2): 1055-68, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16299390

ABSTRACT

Double-strand DNA breaks can be repaired by any of several alternative mechanisms that differ greatly in the nature of the final repaired products. We used a reporter construct, designated "Repair reporter 3" (Rr3), to measure the relative usage of these pathways in Drosophila germ cells. The method works by creating a double-strand break at a specific location such that expression of the red fluorescent protein, DsRed, in the next generation can be used to infer the frequency at which each pathway was used. A key feature of this approach is that most data come from phenotypic scoring, thus allowing large sample sizes and considerable precision in measurements. Specifically, we measured the proportion of breaks repaired by (1) conversion repair, (2) nonhomologous end joining (NHEJ), or (3) single-strand annealing (SSA). For conversion repair, the frequency of mitotic crossing over in the germ line indicates the relative prevalence of repair by double Holliday junction (DHJ) formation vs. the synthesis-dependent strand annealing (SDSA) pathway. We used this method to show that breaks occurring early in germ-line development were much more frequently repaired via single-strand annealing and much less likely to be repaired by end joining compared with identical breaks occurring later in development. Conversion repair was relatively rare when breaks were made either very early or very late in development, but was much more frequent in between. Significantly, the changes in relative usage occurred in a compensatory fashion, such that an increase in one pathway was accompanied by decreases in others. This negative correlation is interpreted to mean that the pathways for double-strand break repair compete with each other to handle a given breakage event.


Subject(s)
DNA Damage/physiology , DNA Repair/physiology , Drosophila melanogaster/genetics , Signal Transduction/genetics , Animals , Animals, Genetically Modified , Crosses, Genetic , DNA, Cruciform/physiology , Female , Genes, Reporter , Luminescent Proteins/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL