Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 17856, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632996

ABSTRACT

Ecological networks such as plant-pollinator and host-parasite networks have structured interactions that define who interacts with whom. The structure of interactions also shapes ecological and evolutionary dynamics. Yet, there is significant ongoing debate as to whether certain structures, e.g., nestedness, contribute positively, negatively or not at all to biodiversity. We contend that examining variation in life history traits is key to disentangling the potential relationship between network structure and biodiversity. Here, we do so by analyzing a dynamic model of virus-bacteria interactions across a spectrum of network structures. Consistent with prior studies, we find plausible parameter domains exhibiting strong, positive relationships between nestedness and biodiversity. Yet, the same model can exhibit negative relationships between nestedness and biodiversity when examined in a distinct, plausible region of parameter space. We discuss steps towards identifying when network structure could, on its own, drive the resilience, sustainability, and even conservation of ecological communities.


Subject(s)
Biodiversity , Ecosystem , Host-Parasite Interactions , Models, Theoretical , Animals , Bacteria/genetics , Population Dynamics , Viruses/genetics
2.
Nat Commun ; 6: 8091, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26348688

ABSTRACT

Multilevel societies, containing hierarchically nested social levels, are remarkable social structures whose origins are unclear. The social relationships of sperm whales are organized in a multilevel society with an upper level composed of clans of individuals communicating using similar patterns of clicks (codas). Using agent-based models informed by an 18-year empirical study, we show that clans are unlikely products of stochastic processes (genetic or cultural drift) but likely originate from cultural transmission via biased social learning of codas. Distinct clusters of individuals with similar acoustic repertoires, mirroring the empirical clans, emerge when whales learn preferentially the most common codas (conformism) from behaviourally similar individuals (homophily). Cultural transmission seems key in the partitioning of sperm whales into sympatric clans. These findings suggest that processes similar to those that generate complex human cultures could not only be at play in non-human societies but also create multilevel social structures in the wild.


Subject(s)
Behavior, Animal , Hierarchy, Social , Social Behavior , Social Conformity , Social Learning , Sperm Whale , Vocalization, Animal , Animals , Models, Theoretical , Stochastic Processes
3.
mBio ; 5(5): e01045-13, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25161187

ABSTRACT

UNLABELLED: Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. IMPORTANCE: Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an extra level of complexity in this predator-prey microbial system. Our results demonstrate that the impact of phage infection in this system is widespread and that the CRISPR/Cas system is likely to be an important aspect of the evolutionary dynamics in C. difficile.


Subject(s)
Clostridioides difficile/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Bacterial , Prophages/genetics , Base Sequence , Biodiversity , Evolution, Molecular , Microarray Analysis , Molecular Sequence Data , Mutation , Sequence Alignment , Sequence Analysis, DNA , Transcriptome
4.
ISME J ; 7(3): 520-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23178671

ABSTRACT

Bacteriophages are the most abundant biological life forms on Earth. However, relatively little is known regarding which bacteriophages infect and exploit which bacteria. A recent meta-analysis showed that empirically measured phage-bacteria infection networks are often significantly nested, on average, and not modular. A perfectly nested network is one in which phages can be ordered from specialist to generalist such that the host range of a given phage is a subset of the host range of the subsequent phage in the ordering. The same meta-analysis hypothesized that modularity, in which groups of phages specialize on distinct groups of hosts, should emerge at larger geographic and/or taxonomic scales. In this paper, we evaluate the largest known phage-bacteria interaction data set, representing the interaction of 215 phage types with 286 host types sampled from geographically separated sites in the Atlantic Ocean. We find that this interaction network is highly modular. In addition, some of the modules identified in this data set are nested or contain submodules, indicating the presence of multi-scale structure, as hypothesized in the earlier meta-analysis. We examine the role of geography in driving these patterns and find evidence that the host range of phages and the phage permissibility of bacteria is driven, in part, by geographic separation. We conclude by discussing approaches to disentangle the roles of ecology and evolution in driving complex patterns of interaction between phages and bacteria.


Subject(s)
Aquatic Organisms/physiology , Bacteria/virology , Bacteriophages/physiology , Atlantic Ocean , Bacteriophages/genetics , Geography , Host Specificity
5.
Trends Microbiol ; 21(2): 82-91, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23245704

ABSTRACT

Phage and their bacterial hosts are the most abundant and genetically diverse group of organisms on the planet. Given their dominance, it is no wonder that many recent studies have found that phage-bacteria interactions strongly influence global biogeochemical cycles, incidence of human diseases, productivity of industrial microbial commodities, and patterns of microbial genome diversity. Unfortunately, given the extreme diversity and complexity of microbial communities, traditional analyses fail to characterize interaction patterns and underlying processes. Here, we review emerging systems approaches that combine empirical data with rigorous theoretical analysis to study phage-bacterial interactions as networks rather than as coupled interactions in isolation.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Biological Evolution , Environment , Research , Viral Tropism
6.
Proc Natl Acad Sci U S A ; 108(28): E288-97, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21709225

ABSTRACT

Interactions between bacteria and the viruses that infect them (i.e., phages) have profound effects on biological processes, but despite their importance, little is known on the general structure of infection and resistance between most phages and bacteria. For example, are bacteria-phage communities characterized by complex patterns of overlapping exploitation networks, do they conform to a more ordered general pattern across all communities, or are they idiosyncratic and hard to predict from one ecosystem to the next? To answer these questions, we collect and present a detailed metaanalysis of 38 laboratory-verified studies of host-phage interactions representing almost 12,000 distinct experimental infection assays across a broad spectrum of taxa, habitat, and mode of selection. In so doing, we present evidence that currently available host-phage infection networks are statistically different from random networks and that they possess a characteristic nested structure. This nested structure is typified by the finding that hard to infect bacteria are infected by generalist phages (and not specialist phages) and that easy to infect bacteria are infected by generalist and specialist phages. Moreover, we find that currently available host-phage infection networks do not typically possess a modular structure. We explore possible underlying mechanisms and significance of the observed nested host-phage interaction structure. In addition, given that most of the available host-phage infection networks examined here are composed of taxa separated by short phylogenetic distances, we propose that the lack of modularity is a scale-dependent effect, and then, we describe experimental studies to test whether modular patterns exist at macroevolutionary scales.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Host-Pathogen Interactions/physiology , Bacteria/genetics , Bacterial Physiological Phenomena , Bacteriophage lambda/genetics , Bacteriophage lambda/pathogenicity , Bacteriophage lambda/physiology , Bacteriophages/genetics , Bacteriophages/pathogenicity , Biological Evolution , Biostatistics , Databases, Factual , Ecosystem , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli/virology , Host-Pathogen Interactions/genetics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...