Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 750, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987528

ABSTRACT

Ion transport in non-aqueous electrolytes is crucial for high performance lithium-ion battery (LIB) development. The design of superior electrolytes requires extensive experimentation across the compositional space. To support data driven accelerated electrolyte discovery efforts, we curated and analyzed a large dataset covering a wide range of experimentally recorded ionic conductivities for various combinations of lithium salts, solvents, concentrations, and temperatures. The dataset is named as 'Conductivity Atlas for Lithium salts and Solvents' (CALiSol-23). Comprehensive datasets are lacking but are critical to building chemistry agnostic machine learning models for conductivity as well as data driven electrolyte optimization tasks. CALiSol-23 was derived from an exhaustive review of literature concerning experimental non-aqueous electrolyte conductivity measurement. The final dataset consists of 13,825 individual data points from 27 different experimental articles, in total covering 38 solvents, a broad temperature range, and 14 lithium salts. CALiSol-23 can help expedite machine learning model development that can help in understanding the complexities of ion transport and streamlining the optimization of non-aqueous electrolyte mixtures.

2.
ACS Appl Mater Interfaces ; 13(19): 22540-22548, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33947179

ABSTRACT

LiCoO2 (LCO) is one of the most-widely used cathode active materials for Li-ion batteries. Even though the material undergoes an electronic two-phase transition upon Li-ion cell charging, LCO exhibits competitive performance in terms of rate capability. Herein the insulator-metal transition of LCO is investigated by operando Raman spectroscopy complemented with DFT calculations and a developed sampling volume model. We confirm the presence of a Mott insulator α-phase at dilute Li-vacancy concentrations (x > 0.87, x in LixCoO2), which gradually transitions to primarily a metallic ß-phase as x approaches 0.75. In addition, we find that the charge-discharge intensity trends of LCO Raman-active bands exhibit a characteristic hysteresis, which, unexpectedly, narrows at higher cycling rates. When comparing these trends to our numerical model of laser penetration into a spatially heterogeneous particle we provide compelling evidence that the insulator-metal transition of LCO follows a two-phase route at very low cycling rates, which is suppressed in favor of a solid-solution route at rates above 20 mA/gLCO (∼C/10). The observations explain why LCO exhibits competitive rate capabilities despite being observed to undergo an intuitively slow two-phase transition route: a kinetically faster solid-solution transition route becomes available when the active material is cycled at rates >C/10. Operando Raman spectroscopy combined with sample volume modeling and DFT calculations is shown to provide unique insights into fundamental processes governing the performance of state-of-the-art cathode materials for Li-ion batteries.

3.
J Phys Chem Lett ; 11(10): 4119-4123, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32354215

ABSTRACT

The solid electrolyte interphase (SEI) is the most critical yet least understood component to guarantee stable and safe operation of a Li-ion cell. Herein, the early stages of SEI formation in a typical LiPF6 and organic carbonate-based Li-ion electrolyte are explored by operando surface-enhanced Raman spectroscopy, on-line electrochemical mass spectrometry, and electrochemical quartz crystal microbalance. The electric double layer is directly observed to charge as Li+ solvated by ethylene carbonate (EC) progressively accumulates at the negatively charged electrode surface. Further negative polarization triggers SEI formation, as evidenced by H2 evolution and electrode mass deposition. Electrolyte impurities, HF and H2O, are reduced early and contribute in a multistep (electro)chemical process to an inorganic SEI layer rich in LiF and Li2CO3. This study is a model example of how a combination of highly surface-sensitive operando characterization techniques offers a step forward to understand interfacial phenomena in Li-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...