Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2512: 153-179, 2022.
Article in English | MEDLINE | ID: mdl-35818005

ABSTRACT

Microbial communities' taxonomic and functional diversity has been broadly studied since sequencing technologies enabled faster and cheaper data obtainment. Nevertheless, the programming skills needed and the amount of software available may be overwhelming to someone trying to analyze these data. Here, we present a comprehensive and straightforward pipeline that takes shotgun metagenomics data through the needed steps to obtain valuable results. The raw data goes through a quality control process, metagenomic assembly, binning (the obtention of single genomes from a metagenome), taxonomic assignment, and taxonomic diversity analysis and visualization.


Subject(s)
Metagenomics , Microbiota , Computational Biology/methods , Metagenome , Metagenomics/methods , Sequence Analysis, DNA/methods , Software
2.
Nat Commun ; 7: 10284, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26762469

ABSTRACT

Marine algae are instrumental in carbon cycling and atmospheric carbon dioxide (CO2) regulation. One group, coccolithophores, uses carbon to photosynthesize and to calcify, covering their cells with chalk platelets (coccoliths). How ocean acidification influences coccolithophore calcification is strongly debated, and the effects of carbonate chemistry changes in the geological past are poorly understood. This paper relates degree of coccolith calcification to cellular calcification, and presents the first records of size-normalized coccolith thickness spanning the last 14 Myr from tropical oceans. Degree of calcification was highest in the low-pH, high-CO2 Miocene ocean, but decreased significantly between 6 and 4 Myr ago. Based on this and concurrent trends in a new alkenone ɛp record, we propose that decreasing CO2 partly drove the observed trend via reduced cellular bicarbonate allocation to calcification. This trend reversed in the late Pleistocene despite low CO2, suggesting an additional regulator of calcification such as alkalinity.


Subject(s)
Calcification, Physiologic , Calcium Carbonate/metabolism , Carbon Cycle , Carbon Dioxide/chemistry , Haptophyta/metabolism , Seawater/chemistry , Calcium Carbonate/chemistry , Haptophyta/ultrastructure , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Oceans and Seas
3.
Science ; 344(6189): 1244-50, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24926012

ABSTRACT

Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.


Subject(s)
Climate Change , Seawater , Water Movements , Atlantic Ocean , Mediterranean Sea , Paleontology
4.
Science ; 340(6130): 341-4, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23599491

ABSTRACT

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Subject(s)
Adaptation, Physiological , Dinoflagellida/physiology , Ecosystem , Ice Cover , Oceans and Seas , Phytoplankton/physiology , Zooplankton/physiology , Animals , Antarctic Regions , Cold Temperature , Fossils
5.
Front Microbiol ; 3: 233, 2012.
Article in English | MEDLINE | ID: mdl-22783242

ABSTRACT

Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus) and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from Ocean Drilling Program Site 1089 (Subantarctic Zone) reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized) resulting in the bloom of G. caribbeanica. These seasonal blooms of may have induced "white tides" similar to those observed today in Emiliania huxleyi.

6.
Science ; 306(5702): 1762-5, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576615

ABSTRACT

A continuous high-resolution Western Mediterranean sea surface temperature (SST) alkenone record spanning the past 250,000 years shows that abrupt changes were more common at warming than at cooling. During marine isotope stage (MIS) 6, SST oscillated following a stadial-interstadial pattern but at lower intensities and rates of change than in the Dansgaard/Oeschger events of MIS 3. Some of the most prominent events occurred over MISs 5 and 7, after prolonged warm periods of high stability. Climate during the whole period was predominantly maintained in interglacial-interstadial conditions, whereas the duration of stadials was much shorter.

SELECTION OF CITATIONS
SEARCH DETAIL
...