ABSTRACT
Coronary heart disease (CHD) is a prevalent cardiovascular disease characterized by coronary artery blood flow reductions caused by lipid deposition and oxidation within the coronary arteries. Dyslipidemia is associated with local tissue damage by oxidative stress/inflammation and carotid bodies (CB) peripheral chemoreceptors are heavily modulated by both reactive oxygen species and pro-inflammatory molecules (i.e., cytokines). Despite this, it is not know whether CB-mediated chemoreflex drive may be affected in CHD. In the present study, we evaluated peripheral CB-mediated chemoreflex drive, cardiac autonomic function, and the incidence of breathing disorders in a murine model of CHD. Compared to age-matched control mice, CHD mice showed enhanced CB-chemoreflex drive (twofold increase in the hypoxic ventilatory response), cardiac sympathoexcitation, and irregular breathing disorders. Remarkably, all these were closely linked to the enhanced CB-mediated chemoreflex drive. Our results showed that mice with CHD displayed an enhanced CB chemoreflex, sympathoexcitation, and disordered breathing and suggest that CBs may be involved in chronic cardiorespiratory alterations in the setting of CHD.
Subject(s)
Carotid Body , Heart Failure , Mice , Animals , Carotid Body/physiology , Chemoreceptor Cells/physiology , Heart , Autonomic Nervous System , HypoxiaABSTRACT
Carotid bodies (CBs) are main peripheral chemoreceptors involved in breathing regulation. Despite the well-known role played by CBs on breathing control, the precise contribution of CBs on the regulation of lung mechanics remains controversial. Accordingly, we study changes in lung mechanics in normoxia (FiO2 21%) and hypoxia (FiO2 8%) in mice with or without functional CBs. For this, we used adult male mice that underwent sham or CB denervation (CBD) surgery. Compared to sham-operated mice, we found that CBD induced an increase in lung resistance (RL) while breathing normoxic air (sham vs. CBD, p < 0.05). Importantly, changes in RL were accompanied by an approximately threefold reduction in dynamic compliance (Cdyn). Additionally, end-expiratory work (EEW) was increased in normoxia in the CBD group. Contrarily, we found that CBD has no effect on lung mechanics during hypoxic stimulation. Indeed, RL, Cdyn, and EEW values in CBD mice were undistinguishable from the ones obtained in sham mice. Finally, we found that CBD induces lung parenchyma morphological alterations characterized by reduced alveoli space. Together our results showed that CBD progressively increases lung resistance at normoxic conditions and suggest that CB tonic afferent discharges are needed for the proper regulation of lung mechanics at rest.