Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 19521, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39187555

ABSTRACT

The essence of quantum machine learning is to optimize problem-solving by executing machine learning algorithms on quantum computers and exploiting potent laws such as superposition and entanglement. Support vector machine (SVM) is widely recognized as one of the most effective classification machine learning techniques currently available. Since, in conventional systems, the SVM kernel technique tends to sluggish down and even fail as datasets become increasingly complex or jumbled. To compare the execution time and accuracy of conventional SVM classification to that of quantum SVM classification, the appropriate quantum features for mapping need to be selected. As the dataset grows complex, the importance of selecting an appropriate feature map that outperforms or performs as well as the classification grows. This paper utilizes conventional SVM to select an optimal feature map and benchmark dataset for predicting air quality. Experimental evidence demonstrates that the precision of quantum SVM surpasses that of classical SVM for air quality assessment. Using quantum labs from IBM's quantum computer cloud, conventional and quantum computing have been compared. When applied to the same dataset, the conventional SVM achieved an accuracy of 91% and 87% respectively, whereas the quantum SVM demonstrated an accuracy of 97% and 94% respectively for air quality prediction. The study introduces the use of quantum Support Vector Machines (SVM) for predicting air quality. It emphasizes the novel method of choosing the best quantum feature maps. Through the utilization of quantum-enhanced feature mapping, our objective is to exceed the constraints of classical SVM and achieve unparalleled levels of precision and effectiveness. We conduct precise experiments utilizing IBM's state-of-the-art quantum computer cloud to compare the performance of conventional and quantum SVM algorithms on a shared dataset.

2.
Sensors (Basel) ; 23(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960657

ABSTRACT

The Internet of Things (IoT) is an innovative technology that presents effective and attractive solutions to revolutionize various domains. Numerous solutions based on the IoT have been designed to automate industries, manufacturing units, and production houses to mitigate human involvement in hazardous operations. Owing to the large number of publications in the IoT paradigm, in particular those focusing on industrial IoT (IIoT), a comprehensive survey is significantly important to provide insights into recent developments. This survey presents the workings of the IoT-based smart industry and its major components and proposes the state-of-the-art network infrastructure, including structured layers of IIoT architecture, IIoT network topologies, protocols, and devices. Furthermore, the relationship between IoT-based industries and key technologies is analyzed, including big data storage, cloud computing, and data analytics. A detailed discussion of IIoT-based application domains, smartphone application solutions, and sensor- and device-based IIoT applications developed for the management of the smart industry is also presented. Consequently, IIoT-based security attacks and their relevant countermeasures are highlighted. By analyzing the essential components, their security risks, and available solutions, future research directions regarding the implementation of IIoT are outlined. Finally, a comprehensive discussion of open research challenges and issues related to the smart industry is also presented.

3.
Health Sci Rep ; 6(10): e1603, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37808926

ABSTRACT

Background and Aims: The 2022-mpox outbreak has spread worldwide in a short time. Integrated knowledge of the epidemiology, clinical characteristics, and transmission of mpox are limited. This systematic review of peer-reviewed articles and gray literature was conducted to shed light on the epidemiology, clinical features, and transmission of 2022-mpox outbreak. Methods: We identified 45 peer-reviewed manuscripts for data analysis. The standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement and Cochrane Collaboration were followed for conducting the study. Results: The case number of mpox has increased about 100 times worldwide. About 99% of the cases in 2022 outbreak was from non-endemic regions. Men (70%-98% cases) were mostly infected with homosexual and bisexual behavior (30%-60%). The ages of the infected people ranged between 30 and 40 years. The presence of HIV and sexually transmitted infections among 30%-60% of cases were reported. Human-to-human transmission via direct contact and different body fluids were involved in the majority of the cases (90%-100%). Lesions in genitals, perianal, and anogenital areas were more prevalent. Unusually, pharyngitis (15%-40%) and proctitis (20%-40%) were more common during 2022 outbreak than pre-2022 outbreaks. Brincidofovir is approved for the treatment of smallpox by FDA (USA). Two vaccines, including JYNNEOSTM and ACAM2000®, are approved and used for pre- and post-prophylaxis in cases. About 100% of the cases in non-endemic regions were associated with isolates of IIb clade with a divergence of 0.0018-0.0035. Isolates from B.1 lineage were the most predominant followed by B.1.2 and B.1.10. Conclusion: This study will add integrated knowledge of the epidemiology, clinical features, and transmission of mpox.

4.
Sensors (Basel) ; 23(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37765768

ABSTRACT

Adaptive equalization is crucial in mitigating distortions and compensating for frequency response variations in communication systems. It aims to enhance signal quality by adjusting the characteristics of the received signal. Particle swarm optimization (PSO) algorithms have shown promise in optimizing the tap weights of the equalizer. However, there is a need to enhance the optimization capabilities of PSO further to improve the equalization performance. This paper provides a comprehensive study of the issues and challenges of adaptive filtering by comparing different variants of PSO and analyzing the performance by combining PSO with other optimization algorithms to achieve better convergence, accuracy, and adaptability. Traditional PSO algorithms often suffer from high computational complexity and slow convergence rates, limiting their effectiveness in solving complex optimization problems. To address these limitations, this paper proposes a set of techniques aimed at reducing the complexity and accelerating the convergence of PSO.

5.
Sensors (Basel) ; 23(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37299993

ABSTRACT

Internet of Things (IoT) has made significant strides in energy management systems recently. Due to the continually increasing cost of energy, supply-demand disparities, and rising carbon footprints, the need for smart homes for monitoring, managing, and conserving energy has increased. In IoT-based systems, device data are delivered to the network edge before being stored in the fog or cloud for further transactions. This raises worries about the data's security, privacy, and veracity. It is vital to monitor who accesses and updates this information to protect IoT end-users linked to IoT devices. Smart meters are installed in smart homes and are susceptible to numerous cyber attacks. Access to IoT devices and related data must be secured to prevent misuse and protect IoT users' privacy. The purpose of this research was to design a blockchain-based edge computing method for securing the smart home system, in conjunction with machine learning techniques, in order to construct a secure smart home system with energy usage prediction and user profiling. The research proposes a blockchain-based smart home system that can continuously monitor IoT-enabled smart home appliances such as smart microwaves, dishwashers, furnaces, and refrigerators, among others. An approach based on machine learning was utilized to train the auto-regressive integrated moving average (ARIMA) model for energy usage prediction, which is provided in the user's wallet, to estimate energy consumption and maintain user profiles. The model was tested using the moving average statistical model, the ARIMA model, and the deep-learning-based long short-term memory (LSTM) model on a dataset of smart-home-based energy usage under changing weather conditions. The findings of the analysis reveal that the LSTM model accurately forecasts the energy usage of smart homes.


Subject(s)
Blockchain , Internet of Things , Machine Learning , Memory, Long-Term , Microwaves
SELECTION OF CITATIONS
SEARCH DETAIL