Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067518

ABSTRACT

Tetrahydrocurcumin, the most abundant curcumin transformation product in biological systems, can potentially be a new alternative therapeutic agent with improved anti-inflammatory activity and higher bioavailability than curcumin. In this article, we describe the synthesis and evaluation of the anti-inflammatory activities of tetrahydrocurcumin derivatives. Eleven tetrahydrocurcumin derivatives were synthesized via Steglich esterification on both sides of the phenolic rings of tetrahydrocurcumin with the aim of improving the anti-inflammatory activity of this compound. We showed that tetrahydrocurcumin (2) inhibited TNF-α and IL-6 production but not PGE2 production. Three tetrahydrocurcumin derivatives inhibited TNF-α production, five inhibited IL-6 production, and three inhibited PGE2 production. The structure-activity relationship analysis suggested that two factors could contribute to the biological activities of these compounds: the presence or absence of planarity and their structural differences. Among the tetrahydrocurcumin derivatives, cyclic compound 13 was the most active in terms of TNF-α production, showing even better activity than tetrahydrocurcumin. Acyclic compound 11 was the most effective in terms of IL-6 production and retained the same effect as tetrahydrocurcumin. Moreover, acyclic compound 12 was the most active in terms of PGE2 production, displaying better inhibition than tetrahydrocurcumin. A 3D-QSAR analysis suggested that the anti-inflammatory activities of tetrahydrocurcumin derivatives could be increased by adding bulky groups at the ends of compounds 2, 11, and 12.


Subject(s)
Curcumin , Curcumin/chemistry , Tumor Necrosis Factor-alpha , Interleukin-6 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Structure-Activity Relationship
2.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835104

ABSTRACT

Herein, we describe the synthesis and evaluation of anti-inflammatory activities of new curcumin derivatives. The thirteen curcumin derivatives were synthesized by Steglich esterification on one or both of the phenolic rings of curcumin with the aim of providing improved anti-inflammatory activity. Monofunctionalized compounds showed better bioactivity than the difunctionalized derivatives in terms of inhibiting IL-6 production, and known compound 2 presented the highest activity. Additionally, this compound showed strong activity against PGE2. Structure-activity relationship studies were carried out for both IL-6 and PGE2, and it was found that the activity of this series of compounds increases when a free hydroxyl group or aromatic ligands are present on the curcumin ring and a linker moiety is absent. Compound 2 remained the highest activity in modulating IL-6 production and showed strong activity against PGE2 synthesis.


Subject(s)
Anti-Inflammatory Agents , Curcumin , Polyphenols , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Interleukin-6 , Polyphenols/chemistry , Structure-Activity Relationship
3.
Comb Chem High Throughput Screen ; 25(7): 1134-1147, 2022.
Article in English | MEDLINE | ID: mdl-33645478

ABSTRACT

BACKGROUND: Red mamey is the fruit of P. sapota, a tree found in Mesoamerica and Asia. This fruit is considered a nutraceutical due to its multiple beneficial health including antiamyloidogenic activity and potential anti-tumorigenic property. Red mamey contain a variety of carotenoids including novel ketocarotenoids such as sapotexanthin and cryptocapsin. A ketocarotenoid is a chemical compound with a carbonyl group present in the ß-ring or in the double bond chain of a carotenoid. In red mamey, the 3'-deoxy-k-end group in sapotexanthin has proven to be an important pro-vitamin A source, which is essential for maintaining a healthy vision and cognitive processes. OBJECTIVE: This work reviews the current knowledge about the chemistry and biological activities of carotenoids in red mamey. METHOD: An exhaustive extraction is the most usual methodology to isolate and thoroughly characterize the carotenoids present in this fruit. High performance liquid chromatography is used to determine the profile of total carotenoids and its purity, while atmospheric pressure chemical ionization was used to determine their molecular weight and nuclear magnetic resonance determined their structure. RESULT: For each 100 g of fresh weight, 0.12 mg of total carotenoid from this fruit can be obtained. Out of the more than 47 reported carotenoids in red mamey, only 34 have a detailed characterization. CONCLUSION: It is important to continue studying the chemical composition and biological activity of this unique tropical fruit with commercial and nutritional value.


Subject(s)
Pouteria , Carotenoids/chemistry , Carotenoids/pharmacology , Chromatography, High Pressure Liquid , Fruit , Magnetic Resonance Spectroscopy , Pouteria/chemistry
4.
Rapid Commun Mass Spectrom ; 35(17): e9143, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34131977

ABSTRACT

RATIONALE: Clumped isotope geochemistry examines the pairing or clumping of heavy isotopes in molecules and provides information about the thermodynamic and kinetic controls on their formation. The first clumped isotope measurements of carbonate minerals were first published 15 years ago, and since then, interlaboratory offsets have been observed, and laboratory and community practices for measurement, data analysis, and instrumentation have evolved. Here we briefly review historical and recent developments for measurements, share Tripati Lab practices for four different instrument configurations, test a recently published proposal for carbonate-based standardization on multiple instruments using multi-year data sets, and report values for 21 different carbonate standards that allow for recalculations of previously published data sets. METHODS: We examine data from 4628 standard measurements on Thermo MAT 253 and Nu Perspective IS mass spectrometers, using a common acid bath (90°C) and small-sample (70°C) individual reaction vessels. Each configuration was investigated by treating some standards as anchors (working standards) and the remainder as unknowns (consistency standards). RESULTS: We show that different acid digestion systems and mass spectrometer models yield indistinguishable results when instrument drift is well characterized. For linearity correction, mixed gas-and-carbonate standardization or carbonate-only standardization yields similar results. No difference is observed in the use of three or eight working standards for the construction of transfer functions. CONCLUSIONS: We show that all configurations yield similar results if instrument drift is robustly characterized and validate a recent proposal for carbonate-based standardization using large multiyear data sets. Δ47 values are reported for 21 carbonate standards on both the absolute reference frame (ARF; also refered to as the Carbon Dioxide Equilibrated Scale or CDES) and the new InterCarb-Carbon Dioxide Equilibrium Scale (I-CDES) reference frame, facilitating intercomparison of data from a diversity of labs and instrument configurations and restandardization of a broad range of sample sets between 2006, when the first carbonate measurements were published, and the present.

5.
J Alzheimers Dis ; 82(s1): S321-S333, 2021.
Article in English | MEDLINE | ID: mdl-33337368

ABSTRACT

BACKGROUND: The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-ß (Aß) fibrils due to the misfolding/aggregation of the Aß peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aß42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. OBJECTIVE: To computationally assess the interaction between Aß peptide and a set of curcumin derivatives previously explored in experimental assays. METHODS: The interactions of ten ligands with Aß monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in silico evaluation of the interaction between these derivatives and the Aß42 peptide, both in the monomeric and fibril forms. RESULTS: The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aß42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aß42 monomers occur in a region critical for peptide aggregation. CONCLUSION: Results showed that a single substitution in curcumin improved the interaction of the ligands with the Aß monomer more so than a double substitution. Our molecular docking studies thus provide important insights for further developing/validating novel curcumin-derived molecules with high therapeutic potential for AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Computer Simulation , Curcumin/metabolism , Molecular Docking Simulation/methods , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Curcumin/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding/physiology , Protein Structure, Secondary
6.
Nat Protoc ; 15(6): 1954-1991, 2020 06.
Article in English | MEDLINE | ID: mdl-32405051

ABSTRACT

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.


Subject(s)
Metabolomics/methods , Tandem Mass Spectrometry/methods , Animals , Chromatography, Liquid/methods , Humans , Metabolic Networks and Pathways , Mice , Reproducibility of Results , Software , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...