Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000938

ABSTRACT

Low-frequency electromagnetic induction (EMI) is a non-invasive geophysical method that is based on the induction of electromagnetic (EM) waves into the subsurface to quantify changes in electrical conductivity. In this study, we present an open (design details and software are accessible) and modular system for the collection of EMI data. The instrument proposed allows for the separations between the transmitter to be adjusted and up to four receiving antennas as well as the acquisition frequency (in the range between 3 and 50 kHz) to permit measurements with variable depth of investigation. The sensor provides access to raw data and the software described in this study allows control of the signal processing chain. The design specifications permit apparent conductivity measurements in the range of between 1 mS/m and 1000 mS/m, with a resolution of 1.0 mS/m and with a sampling rate of up to 10 samples per second. The sensor allows for a synchronous acquisition of a time stamp and a location stamp for each data sample. The sensor has a mass of less than 5 kg, is portable and suitable for one-person operation, provides 4 h of operation time on one battery charge, and provides sufficient rigidity for practical field operations.

2.
Waste Manag ; 149: 21-32, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35700660

ABSTRACT

The disposal of municipal solid waste (MSW) in landfills is the prevalent method of waste management at the global scale. However, the production of landfill gases due to the methanogenic fermentation of wet MSW is a possible threat to human health and accounts for a substantial contribution to the global greenhouse gas emissions. Accordingly, information regarding water content is critical as it is an important factor triggering methane production in MSW landfills. In this study, we propose a petrophysical joint inversion scheme to quantitatively solve for the water content (WC) in landfills based on seismic refraction as well as electrical resistivity data collected at two different frequencies. In this way, we also take into account the contribution of the surface conductivity to the observed electrical response, which is crucial for a reliable quantification of the WC. Our results reveal a high water content within the MSW unit (WC > 20%) for areas characterized by a strong polarization response (normalized chargeability > 5 Mn mS/m). Such areas can be related to an increased biogeochemical activity as evidenced by the detected methane production. We observe consistent estimates between the water content resolved through the proposed joint inversion scheme and values measured in waste samples with a median percentage error of 17%. Our study demonstrates the possibility to obtain reliable estimates for the WC in MSW landfills through the petrophysical joint inversion of seismic and electrical data when surface conductivity is explicitly considered.


Subject(s)
Refuse Disposal , Humans , Methane , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Water
3.
J Contam Hydrol ; 248: 104026, 2022 06.
Article in English | MEDLINE | ID: mdl-35605355

ABSTRACT

Contaminated sites are complex systems posing challenges for their characterization as both contaminant distribution and hydrogeological properties vary markedly at the metric scale, yet may extend over broad areas, with serious issues of spatial under-sampling in the space. Characterization with sufficient spatial resolution is thus, one of the main concerns and still open areas of research. To this end, the joint use of direct and indirect (i.e., geophysical) investigation methods is a very promising approach. This paper presents a case study aspiring to demonstrate the benefit of a multidisciplinary approach in the characterization of a hydrocarbon-contaminated site. Detailed multi-source data, collected via stratigraphic boreholes, laser-induced fluorescence (LIF) surveys, electrical resistivity tomography (ERT) prospecting, groundwater hydrochemical monitoring, and gas chromatography-mass spectrometry (GC-MS) analyses were compiled into an interactive big-data package for modeling activities. The final product is a comprehensive conceptual hydro-geophysical model overlapping multi-modality data and capturing hydrogeological and geophysical structures, as well as contamination distribution in space and dynamics in time. The convergence of knowledge in the joint model verifies the possibility of discriminating geophysical findings based on lithological features and contamination effects, unmasking the real characteristics of the pollutant, the contamination mechanisms, and the residual phase hydrocarbon sequestration linked to the hydrogeological dynamics and adopted remediation actions. The emerging conceptual site model (CSM), emphasizing the necessity of a large amount of multi-source data for its reliable, high-resolution reconstruction, appears as the necessary tool for the design of remedial actions, as well as for the monitoring of remediation performance.


Subject(s)
Environmental Monitoring , Groundwater , Environmental Monitoring/methods , Groundwater/chemistry , Hydrocarbons/analysis , Models, Theoretical , Spatial Analysis
4.
Archaeol Prospect ; 29(4): 557-577, 2022.
Article in English | MEDLINE | ID: mdl-37064615

ABSTRACT

Prehistoric mines are often too large and too deep for conventional archaeological excavations. Non-destructive and minimally invasive methods of prospection can help to overcome these limits. Our case study of a Late Bronze Age opencast mine (ca. 1050 to 780 BC) shows the potential of geophysical prospection methods combined with core drillings. For the reconstruction of this mine, we combined electrical resistivity and induced polarization (IP) tomography, seismic refraction tomography (SRT) and ground penetrating radar (GPR). The geophysical data were collected based on an orthogonal grid of 10 longitudinal and transverse profiles, laid out over an area of ~330 × 300 m. The profiles allowed a three-dimensional interpolation of the geological units, the mining dumps, the mining areas and the residual mineralization. Additionally, two deep cores were drilled to ground-truth the geophysical prospection results. They provided information about the stratification at intersections of the measurement grid, and this proved crucial for validating the interpreted geophysical profiles. Each geophysical method applied provided different information for the reconstruction of the site: the electrical resistivity tomography offered the best clues as to the locations of the geological units and the dumps, the seismic refraction tomography visualized the transition between the dump or backfill layers and the underlying bedrock, and the IP measurements revealed residual mineralization. The georadar measurements, on the other hand, did not contribute to the interpretation owing to the limited depth of penetration. Based on the combination of borehole and geophysical data, it was possible to develop a hypothetical model of an open-pit mine for copper ore that developed in three phases (mines A-C) during the Late Bronze Age. Without the control provided by the core drillings, one of the mining areas (mine A) could not have been correctly identified in the geophysical prospections.

5.
Sensors (Basel) ; 21(23)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34884056

ABSTRACT

Lakes are integrators of past climate and ecological change. This information is stored in the sediment record at the lake bottom, and to make it available for paleoclimate research, potential target sites with undisturbed and continuous sediment sequences need to be identified. Different geophysical methods are suitable to identify, explore, and characterize sediment layers prior to sediment core recovery. Due to the high resolution, reflection seismic methods have become standard for this purpose. However, seismic measurements cannot always provide a comprehensive image of lake-bottom sediments, e.g., due to lacking seismic contrasts between geological units or high attenuation of seismic waves. Here, we developed and tested a complementary method based on water-borne electrical-resistivity tomography (ERT) measurements. Our setup consisted of 13 floating electrodes (at 5 m spacing) used to collect ERT data with a dipole-dipole configuration. We used a 1D inversion to adjust a layered-earth model, which facilitates the implementation of constraints on water depth, water resistivity, and sediment resistivity as a priori information. The first two parameters were readily obtained from the echo-sounder and conductivity-probe measurements. The resistivity of sediment samples can also be determined in the laboratory. We applied this approach to process ERT data collected on a lake in southern Mexico. The direct comparison of ERT data with reflection seismic data collected with a sub-bottom profiler (SBP) showed that we can significantly improve the sediment-thickness estimates compared to unconstrained 2D inversions. Down to water depths of 20 m, our sediment thickness estimates were close to the sediment thickness derived from collocated SBP seismograms. Our approach represents an implementation of ERT measurements on lakes and complements the standard lake-bottom exploration by reflection seismic methods.


Subject(s)
Lakes , Tomography , Mexico , Water
6.
Sensors (Basel) ; 21(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640941

ABSTRACT

Water-borne transient electromagnetic (TEM) soundings provide the means necessary to investigate the geometry and electrical properties of rocks and sediments below continental water bodies, such as rivers and lakes. Most water-borne TEM systems deploy separated magnetic transmitter and receiver loop antennas-typically in a central or offset configuration. These systems mostly require separated floating devices with rigid structures for both loop antennas. Here, we present a flexible single-loop TEM system, the light-weight design of which simplifies field procedures. Our system also facilitates the use of different geometries of the loop antenna permitting to adjust the depth of investigation (DOI) and the minimum sounding depth in the field. We measure the turn-off ramp with an oscilloscope and use the DOI to assess the minimum and maximum exploration depth of our single-loop TEM system, respectively. A reduction of the loop-antenna size improves early-time TEM data due to a reduced length of the turn-off ramp, whereas an increase of the loop-antenna size enhances the signal strength at late times, which allows to investigate deeper structures below the lake bed. We illustrate the capabilities of our system with a case study carried out at Lake Langau in Austria. Our results show that our system is capable of reaching a DOI of up to 50 m (with a maximum radius of the circular loop of 11.9 m), while it also resolves the water layer down to a minimum thickness of 6.8 m (when the radius is reduced to 6.2 m).

7.
Sci Total Environ ; 768: 144997, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736329

ABSTRACT

The characterization of contaminated sites is a serious issue that requires a number of techniques to be deployed in the field to reconstruct the geometry, hydraulic properties and state of contamination of the shallow subsurface, often at the hundreds of meter scale with metric resolution. Among the techniques that have been proposed to complement direct investigations (composed of drilling, sampling, and laboratory characterization) are geophysical methods, which can provide extensive spatial coverage both laterally and at depth with the required resolution. However, geophysical methods only measure physical properties that are indirectly related to contamination, and their correlation may be difficult to ascertain without direct ground truth. In this study, we present a successful example where the results of complex conductivity measurements conducted in an imaging framework are compared with direct evidence of subsoil contamination at a jet fuel impacted site. Thus, proving that a combination of direct and indirect investigations can be successfully used to image a site in its complex (potentially 3D) structure in order to build a reliable conceptual model of the site.

8.
J Contam Hydrol ; 201: 19-29, 2017 06.
Article in English | MEDLINE | ID: mdl-28442237

ABSTRACT

Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as a promising tool to track microbial activity during bioremediation even though further research is still needed to completely understand the bio-geochemical processes involved and their impact on electrical signatures.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons/analysis , Tomography/methods , Water Pollutants, Chemical/analysis , Belgium , Biodegradation, Environmental , Electricity , Groundwater/chemistry , Hydrocarbons/chemistry , Models, Theoretical , Seasons , Soil/chemistry , Temperature , Water Pollutants, Chemical/chemistry
9.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25884287

ABSTRACT

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Subject(s)
Electric Conductivity , Environmental Restoration and Remediation , Groundwater/chemistry , Imaging, Three-Dimensional , Iron/chemistry , Belgium , Hydrocarbons, Chlorinated/analysis , Solutions
10.
J Contam Hydrol ; 136-137: 131-44, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22784635

ABSTRACT

Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (<5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations >1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (<40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons/chemistry , Air Pollutants/chemistry , Benzene/chemistry , Benzene Derivatives/chemistry , Biodegradation, Environmental , Hydrogenation , Toluene/chemistry , Xylenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...