Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 248(23): 2381-2392, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143435

ABSTRACT

Disturbance of sleep homeostasis encompasses health issues, including metabolic disorders like obesity, diabetes, and augmented stress vulnerability. Sleep and stress interact bidirectionally to influence the central nervous system and metabolism. Murine models demonstrate that decreased sleep time is associated with an increased systemic stress response, characterized by endocrinal imbalance, including the elevated activity of hypothalamic-pituitary-adrenal axis, augmented insulin, and reduced adiponectin, affecting peripheral organs physiology, mainly the white adipose tissue (WAT). Within peripheral organs, a local stress response can also be activated by promoting the formation of corticosterone. This local amplifying glucocorticoid signaling is favored through the activation of the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). In WAT, 11ß-HSD1 activity is upregulated by the sympathetic nervous system, suggesting a link between sleep loss, augmented stress response, and a potential WAT metabolic disturbance. To gain more understanding about this relationship, metabolic and stress responses of WAT-sympathectomized rats were analyzed to identify the contribution of the autonomic nervous system to stress response-related metabolic disorders during chronic sleep restriction. Male Wistar rats under sleep restriction were allowed just 6 h of daily sleep over eight weeks. Results showed that rats under sleep restriction presented higher serum corticosterone, increased adipose tissue 11ß-HSD1 activity, weight loss, decreased visceral fat, augmented adiponectin, lower leptin levels, glucose tolerance impairment, and mildly decreased daily body temperature. In contrast, sympathectomized rats under sleep restriction exhibited decreased stress response (lower serum corticosterone and 11ß-HSD1 activity). In addition, they maintained weight loss, explained by a reduced visceral fat pad, leptin, and adiponectin, improved glucose management, and persisting decline in body temperature. These results suggest autonomic nervous system is partially responsible for the WAT-exacerbated stress response and its metabolic and physiological disturbances.


Subject(s)
Corticosterone , Metabolic Diseases , Male , Mice , Rats , Animals , Corticosterone/metabolism , Leptin/metabolism , Intra-Abdominal Fat/metabolism , Adiponectin/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Hypothalamo-Hypophyseal System/metabolism , Rats, Wistar , Pituitary-Adrenal System/metabolism , Adipose Tissue/metabolism , Weight Loss , Sleep , Metabolic Diseases/metabolism , Sympathectomy , Glucose/metabolism
2.
Interv Neuroradiol ; : 15910199231174576, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37186768

ABSTRACT

INTRODUCTION: Intracranial aneurysms (IA) are a focal dilatation of the vessel wall, the rupture of these, causes subarachnoid hemorrhage. Until now, endovascular management is the ideal treatment, providing the interventionist a range of options among which the stent and coils embolization stands out because of its occlusion rate. This study presents the results of a retrospective cohort comparing the effectiveness, morbidity, and mortality of IA treatment with laser-cut stent-assisted coils versus braided stents. METHODOLOGY: Retrospective cohort of patients diagnosed with unruptured intracranial aneurysms treated with coil-assisted laser-cut stents or braided stents between January 2014 and December 2021. RESULTS: In total, 138 patients with 147 intracranial aneurysms were analyzed, 91 of them were treated with laser-cut stent and 56 with braided stents. The main antecedent was arterial hypertension (48.55%). In the immediate angiographic control, a Raymond Roy scale (RRO) I was obtained in 86.81% of the patients with laser-cut stents and 87.50% of the patients with braided stents. In the angiographic follow-up at 12 months, an RRO I occlusion rate of 85.19% was reported in both groups. Perioperative complications occur in 16 patients treated with laser-cut stents and 12 patients treated with braided stents. Three patients presented bleeding complications during the 12-month follow-up, of which two correspond to patients treated with braided stents and one with a laser-cut stent. CONCLUSION: Treatment of patients with intracranial aneurysms with laser-cut stents or braided stents and coils is just as safe and effective.

3.
Front Neurosci ; 16: 907508, 2022.
Article in English | MEDLINE | ID: mdl-35937866

ABSTRACT

Epidemiological and experimental evidence recognize a relationship between sleep-wake cycles and adiposity levels, but the mechanisms that link both are not entirely understood. Adipose tissue secretes adiponectin and leptin hormones, mainly involved as indicators of adiposity levels and recently associated to sleep. To understand how two of the main adipose tissue hormones could influence sleep-wake regulation, we evaluated in male rats, the effect of direct administration of adiponectin or leptin in the ventrolateral preoptic nuclei (VLPO), a major area for sleep promotion. The presence of adiponectin (AdipoR1 and AdipoR2) and leptin receptors in VLPO were confirmed by immunohistochemistry. Adiponectin administration increased wakefulness during the rest phase, reduced delta power, and activated wake-promoting neurons, such as the locus coeruleus (LC), tuberomammillary nucleus (TMN) and hypocretin/orexin neurons (OX) within the lateral hypothalamus (LH) and perifornical area (PeF). Conversely, leptin promoted REM and NREM sleep, including increase of delta power during NREM sleep, and induced c-Fos expression in VLPO and melanin concentrating hormone expressing neurons (MCH). In addition, a reduction in wake-promoting neurons activity was found in the TMN, lateral hypothalamus (LH) and perifornical area (PeF), including in the OX neurons. Moreover, leptin administration reduced tyrosine hydroxylase (TH) immunoreactivity in the LC. Our data suggest that adiponectin and leptin act as hormonal mediators between the status of body energy and the regulation of the sleep-wake cycle.

4.
Chronobiol Int ; 39(3): 374-385, 2022 03.
Article in English | MEDLINE | ID: mdl-34906015

ABSTRACT

Temporal coordination of organisms according to the daytime allows a better performance of physiological processes. However, modern lifestyle habits, such as food intake during the rest phase, promote internal desynchronization and compromise homeostasis and health. The hypothalamic suprachiasmatic nucleus (SCN) synchronizes body physiology and behavior with the environmental light-dark cycle by transmitting time information to several integrative hypothalamic nuclei, such as the paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH) and median preoptic area (MnPO). The SCN receives metabolic information mainly via Neuropeptide Y (NPY) inputs from the intergeniculate nucleus of the thalamus (IGL). Nowadays, there is no evidence of the response of the PVN, DMH and MnPO when the animals are subjected to internal desynchronization by restricting food access to the rest phase of the day. To explore this issue, we compared the circadian activity of the SCN, PVN, DMH and MnPO. In addition, we analyzed the daily activity of the satiety centers of the brainstem, the nucleus of the tractus solitarius (NTS) and area postrema (AP), which send metabolic information to the SCN, directly or via the thalamic intergeniculate leaflet (IGL). For that, male Wistar rats were assigned to three meal protocols: fed during the rest phase (Day Fed); fed during the active phase (Night Fed); free access to food (ad libitum). After 21 d, the daily activity patterns of these nuclei were analyzed by c-Fos immunohistochemistry, as well as NPY immunohistochemistry, in the SCN. The results show that eating during the rest period produces a phase advance in the activity of the SCN, changes the daily activity pattern in the MnPO, NTS and AP and flattens the c-Fos rhythm in the PVN and DMH. Altogether, these results validate previous observations of circadian dysregulation that occurs within the central nervous system when meals are consumed during the rest phase, a behavior that is involved in the metabolic alterations described in the literature.


Subject(s)
Circadian Rhythm , Hypothalamus , Animals , Male , Rats , Circadian Rhythm/physiology , Hypothalamus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Suprachiasmatic Nucleus/metabolism
5.
PLoS One ; 14(11): e0225640, 2019.
Article in English | MEDLINE | ID: mdl-31774858

ABSTRACT

We recently provided highly suggestive preliminary evidence that the renal interstitium contracts reactively in vivo. We demonstrated that renal medullary direct interstitial volume expansion (rmDIVE = 100 µl bolus infusion of 0.9% saline (SS)/30 s) brought about a biphasic renal interstitial hydrostatic pressure (RIHP) response which was abolished when dibutyryl-cAMP was concomitant and interstitially infused. To assess more deeply the feasibility of the concept that the renal interstitium contracts in vivo, two experimental series (S1, S2) were performed in hydropenic rats subjected to acute left renal-denervation, hormonal clamping, and control of renal arterial pressure. In S1, RIHP and renal outer medullary blood flow (RoMBF) were continuously measured before and after a sudden micro-bolus (5µl) injection, into the renal medullary interstitium, of SS containing α-trinositol (α-TNS, anti-inflammatory drug) to either two doses 2 or 4 mM (SS + 2 α-TNS and SS + 4 α-TNS groups). No overall differences between groups in either ΔRIHP or %ΔRoMBF time courses were found; however, in the SS + 2 α-TNS group the data were less scattered and the ΔRIHP time course tended to peak faster and then persisted there, so that, this α-TNS dose was selected for S2. In S2, RIHP and RoMBF were similarly measured in rats randomly assigned to three groups: the CTR group (sham time-control), SS group (SS alone), and SS + α-TNS group. The micro-bolus injection of SS alone (SS group) was unable to increase ΔRIHP. The group with no micro-bolus injection (CTR group) experienced a decrease in ΔRIHP. The micro-bolus injection of SS + 2 α-TNS was accompanied by a differential increase in ΔRIHP (vs. CTR and SS groups). These responses were not associated with differential changes among groups in %ΔRoMBF or hemodilution parameters. These results provide additional evidence that the renal interstitium contracts in vivo.


Subject(s)
Kidney Medulla/physiology , Renal Circulation , Vasoconstriction/physiology , Animals , Hydrostatic Pressure , Kidney Medulla/drug effects , Male , Rats , Rats, Wistar , Sodium Chloride/administration & dosage , Vasoconstriction/drug effects
6.
Physiol Rep ; 5(12)2017 Jun.
Article in English | MEDLINE | ID: mdl-28646097

ABSTRACT

To learn more about controlling renal interstitial hydrostatic pressure (RIHP), we assessed its response to renal medullary direct interstitial volume expansion (rmDIVE = 100 µL bolus infusion/30 sec). Three experimental series (S) were performed in hydropenic, anesthetized, right-nephrectomized, acute left renal-denervated and renal perfusion pressure-controlled rats randomly assigned to groups in each S. S1: Rats without hormonal clamp were contrasted before and after rmDIVE induced via 0.9% saline solution bolus (SS group) or 2% albumin in SS bolus (2% ALB + SS group). Subcapsular ΔRIHP rose slowly, progressively and similarly in both groups by ~3 mmHg. S2: Rats under hormonal clamp were contrasted before and after sham rmDIVE (time CTR group) and real rmDIVE induced via either SS bolus (SS group) or SS bolus containing the subcutaneous tissue fibroblast relaxant dibutyryl-cAMP (SS + db-cAMP group). ΔRIHP showed time, group, and time*group interaction effects with a biphasic response (early: ~1 mmHg; late: ~4 mmHg) in the SS group that was absent in the SS + db-cAMP group. S3: Two groups of rats (SS and SS + db-cAMP) under hormonal clamp were contrasted as in S2, producing similar ΔRIHP results to those of S2 but showing a slow, progressive, and indistinct decrease in renal outer medullary blood flow in both groups. These results provide highly suggestive preliminary evidence that the renal interstitium is capable of contracting reactively in vivo in response to rmDIVE with SS and demonstrate that such a response is abolished when db-cAMP is interstitially and concomitantly infused.


Subject(s)
Hydrostatic Pressure , Kidney Medulla/physiology , Animals , Bucladesine/pharmacology , Fibroblasts/drug effects , Kidney Medulla/cytology , Kidney Medulla/drug effects , Male , Rats , Rats, Wistar , Sodium Chloride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...