Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37237503

ABSTRACT

Diabetic nephropathy is a major complication in diabetic patients. Podocytes undergo loss and detachment from the basal membrane. Intra- and intercellular communication through exosomes are key processes for maintaining function, and the Rab3A/Rab27A system is an important counterpart. Previously, we observed significant changes in the Rab3A/Rab27A system in podocytes under glucose overload, demonstrating its important role in podocyte injury. We investigated the implication of silencing the Rab3A/Rab27A system in high glucose-treated podocytes and analysed the effect on differentiation, apoptosis, cytoskeletal organisation, vesicle distribution, and microRNA expression in cells and exosomes. For this, we subjected podocytes to high glucose and transfection through siRNAs, and we isolated extracellular vesicles and performed western blotting, transmission electron microscopy, RT-qPCR, immunofluorescence and flow cytometry assays. We found that silencing RAB3A and RAB27A generally leads to a decrease in podocyte differentiation and cytoskeleton organization and an increase in apoptosis. Moreover, CD63-positive vesicles experienced a pattern distribution change. Under high glucose, Rab3A/Rab27A silencing ameliorates some of these detrimental processes, suggesting a differential influence depending on the presence or absence of cellular stress. We also observed substantial expression changes in miRNAs that were relevant in diabetic nephropathy upon silencing and glucose treatment. Our findings highlight the Rab3A/Rab27A system as a key participant in podocyte injury and vesicular traffic regulation in diabetic nephropathy.

2.
Eur J Intern Med ; 113: 49-56, 2023 07.
Article in English | MEDLINE | ID: mdl-37080818

ABSTRACT

BACKGROUND: Endothelial dysfunction is a forerunner of atherosclerosis, leading to cardiovascular disease, and albuminuria is a marker of endothelial dysfunction. Circulating levels of microRNAs are emerging as potential biomarkers for cardiovascular disease. Here we estimate the predictive value of a plasma microRNAs signature associated with albuminuria in the incidence of cardiovascular events. METHODS: Plasma microRNAs quantified in hypertensive patients by next generation sequencing were validated in a cohort of patients and controls by real-time quantitative PCR. The microRNAs found to be associated with albuminuria were analysed for their prognostic value in predicting cardiovascular events incidence on a retrospective, population-based study (Hortega Study), using Cox proportional hazard models. RESULTS: A plasma microRNA profile was identified in the discovery cohort (n = 48) associated with albuminuria and three microRNAs (miR-126-3p, miR-1260b and miR-374a-5p) were confirmed in the validation cohort (n = 98). The microRNA signature discriminates urinary albumin excretion at baseline (n = 1025), and predicts the incidence of cardiovascular events and coronary heart disease and stroke in a general population retrospective study within a 14-year follow-up (n = 926). High miR-126-3p levels were associated with a shorter time free of both cardiovascular events (HR=1.48, (1.36-1.62), p < 0.0001), as well as coronary artery disease and stroke combined (HR=2.49, (2.19-2.83), p < 0.0001). CONCLUSIONS: An increased plasma microRNAs profile was identified in hypertensive patients with albuminuria. Increased miR-126-3p suggest it may serve as a prognostic marker for cardiovascular events in a long-term general population. Further studies will assess the potential role of miR-126-3p as a guide for the status of endothelial dysfunction.


Subject(s)
Cardiovascular Diseases , Hypertension , MicroRNAs , Stroke , Humans , Retrospective Studies , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Albuminuria , MicroRNAs/genetics , Biomarkers , Hypertension/epidemiology
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108249

ABSTRACT

Despite considerable progress in our understanding of systemic lupus erythematosus (SLE) pathophysiology, patient diagnosis is often deficient and late, and this has an impact on disease progression. The aim of this study was to analyze non-coding RNA (ncRNA) packaged into exosomes by next-generation sequencing to assess the molecular profile associated with renal damage, one of the most serious complications of SLE, to identify new potential targets to improve disease diagnosis and management using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The plasma exosomes had a specific ncRNA profile associated with lupus nephritis (LN). The three ncRNA types with the highest number of differentially expressed transcripts were microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and piwi-interacting RNAs (piRNAs). We identified an exosomal 29-ncRNA molecular signature, of which 15 were associated only with LN presence; piRNAs were the most representative, followed by lncRNAs and miRNAs. The transcriptional regulatory network showed a significant role for four lncRNAs (LINC01015, LINC01986, AC087257.1 and AC022596.1) and two miRNAs (miR-16-5p and miR-101-3p) in network organization, targeting critical pathways implicated in inflammation, fibrosis, epithelial-mesenchymal transition and actin cytoskeleton. From these, a handful of potential targets, such as transforming growth factor-ß (TGF-ß) superfamily binding proteins (activin-A, TGFB receptors, etc.), WNT/ß-catenin and fibroblast growth factors (FGFs) have been identified for use as therapeutic targets of renal damage in SLE.


Subject(s)
Exosomes , Lupus Erythematosus, Systemic , Lupus Nephritis , MicroRNAs , RNA, Long Noncoding , Humans , Lupus Nephritis/diagnosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lupus Erythematosus, Systemic/genetics , MicroRNAs/genetics , Kidney/metabolism , Exosomes/genetics , Exosomes/metabolism , Piwi-Interacting RNA
4.
Int J Mol Sci ; 23(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35563588

ABSTRACT

Non-coding RNA (ncRNA)-mediated targeting of various genes regulates the molecular mechanisms of the pathogenesis of hypertension (HTN). However, very few circulating long ncRNAs (lncRNAs) have been reported to be altered in essential HTN. The aim of our study was to identify a lncRNA profile in plasma and plasma exosomes associated with urinary albumin excretion in HTN by next-generation sequencing and to assess biological functions enriched in response to albuminuria using GO and KEGG analysis. Plasma exosomes showed higher diversity and fold change of lncRNAs than plasma, and low transcript overlapping was found between the two biofluids. Enrichment analysis identified different biological pathways regulated in plasma or exosome fraction, which were implicated in fatty acid metabolism, extracellular matrix, and mechanisms of sorting ncRNAs into exosomes, while plasma pathways were implicated in genome reorganization, interference with RNA polymerase, and as scaffolds for assembling transcriptional regulators. Our study found a biofluid specific lncRNA profile associated with albuminuria, with higher diversity in exosomal fraction, which identifies several potential targets that may be utilized to study mechanisms of albuminuria and cardiovascular damage.


Subject(s)
Exosomes , Hypertension , MicroRNAs , RNA, Long Noncoding , Albuminuria/genetics , Albuminuria/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , Hypertension/metabolism , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
5.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055008

ABSTRACT

Non-coding RNA (ncRNA), released into circulation or packaged into exosomes, plays important roles in many biological processes in the kidney. The purpose of the present study is to identify a common ncRNA signature associated with early renal damage and its related molecular pathways. Three individual libraries (plasma and urinary exosomes, and total plasma) were prepared from each hypertensive patient (with or without albuminuria) for ncRNA sequencing analysis. Next, an RNA-based transcriptional regulatory network was constructed. The three RNA biotypes with the greatest number of differentially expressed transcripts were long-ncRNA (lncRNA), microRNA (miRNA) and piwi-interacting RNA (piRNAs). We identified a common 24 ncRNA molecular signature related to hypertension-associated urinary albumin excretion, of which lncRNAs were the most representative. In addition, the transcriptional regulatory network showed five lncRNAs (LINC02614, BAALC-AS1, FAM230B, LOC100505824 and LINC01484) and the miR-301a-3p to play a significant role in network organization and targeting critical pathways regulating filtration barrier integrity and tubule reabsorption. Our study found an ncRNA profile associated with albuminuria, independent of biofluid origin (urine or plasma, circulating or in exosomes) that identifies a handful of potential targets, which may be utilized to study mechanisms of albuminuria and cardiovascular damage.


Subject(s)
Albuminuria/etiology , Cell-Free Nucleic Acids , Exosomes , Hypertension/blood , Hypertension/complications , RNA, Untranslated/genetics , Transcriptome , Albuminuria/diagnosis , Biomarkers , Blood Pressure , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humans , Hypertension/diagnosis , Hypertension/etiology , Liquid Biopsy/methods , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...