Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 212(4): 475-84, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20689940

ABSTRACT

RATIONALE: Accumulating evidence for the presence of GABA(A) ρ receptors within the amygdala which differ from other members of the GABA(A) receptor family in both subunit composition and functional properties has been recently obtained. OBJECTIVES: This work was conducted to study whether GABA(A) ρ receptors may have a putative role in the amygdaloid modulation of fear and anxiety. RESULTS: It was found that the bilateral intra-amygdaloid administration (6-240 pmol/side) of (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid, a selective GABA(A) ρ receptor antagonist, reduced dose-dependently the exploration of the open arms of the elevated plus-maze without affecting locomotion and increased the plasma levels of corticosterone. In contrast, bicuculline in the dose range used (1.8-60 pmol/side) induced seizures, but had no effects on the exploration of the maze. CONCLUSIONS: It is suggested that GABA(A) ρ receptors may have a role in the amygdaloid modulation of fear and anxiety.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , Behavior, Animal , Fear , Receptors, GABA-A/metabolism , Amygdala/drug effects , Animals , Behavior, Animal/drug effects , Bicuculline/administration & dosage , Bicuculline/adverse effects , Corticosterone/blood , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Fear/drug effects , GABA-A Receptor Antagonists/administration & dosage , GABA-A Receptor Antagonists/adverse effects , Male , Microdialysis , Motor Activity/drug effects , Phosphinic Acids/administration & dosage , Pyridines/administration & dosage , Rats , Rats, Wistar , Receptors, GABA-A/drug effects , Seizures/chemically induced
2.
Neurochem Res ; 33(8): 1618-33, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18473172

ABSTRACT

The amygdala plays a key role in anxiety. Information from the environment reaches the amygdaloid basolateral nucleus and after its processing is relayed to the amygdaloid central nucleus where a proper anxiogenic response is implemented. Experimental evidence indicates that in this information transfer a GABAergic interface controls the trafficking of impulses between the two nuclei. Recent work indicates that interneuronal communication can take place by classical synaptic transmission (wiring transmission) and by volume transmission in which the neurotransmitter diffuses and flows through the extracellular space from its site of release and binds to extrasynaptic receptors at various distances from the source. Based on evidence from our laboratory the concept is introduced that neurotransmitters in the amygdala can modulate anxiety involving changes in fear learning and memories by effects on receptor mosaics in the fear circuits through wiring and volume transmission modes of communication.


Subject(s)
Amygdala , Anxiety , Fear/physiology , Neurotransmitter Agents/metabolism , Synaptic Transmission/physiology , Amygdala/anatomy & histology , Amygdala/physiology , Animals , Anti-Anxiety Agents/metabolism , Cholecystokinin/metabolism , Dopamine Antagonists/metabolism , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/metabolism , Peptide Fragments/metabolism , Pyridines/metabolism , Rats
3.
Eur J Neurosci ; 26(12): 3614-30, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18088282

ABSTRACT

The amygdala plays a key role in fear and anxiety. The intercalated islands are clusters of glutamate-responsive GABAergic neurons rich in cholecystokinin (CCK)-2 receptors which control the trafficking of nerve impulses from the cerebral cortex to the central nucleus of amygdala. In this study, the nature of the CCK-glutamate-GABA interactions within the rat rostral amygdala, and their relevance for anxiety, were studied. CCK/gastrin-like immunoreactive nerve terminals were found to be mainly restricted to the paracapsular intercalated islands and the rostrolateral part of the main intercalated island. Behaviourally, the bilateral microinjection of CCK-4 (0.043-4.3 pmol/side) or CCK-8S (4.3 pmol/side) into the rostrolateral amygdala reduced the open-arm exploration in the elevated plus-maze without affecting locomotion. In contrast, neither CCK-4 nor CCK-8S (0.043-4.3 pmol/side) had any effects in the shock-probe burying test as compared with their saline-treated controls. Biochemically, CCK-4 (0.3 and 1.5 microm), unlike CCK-8S, enhanced significantly the K(+)-stimulated release of [(3)H]GABA from amygdala slices. These effects were fully prevented by prior superfusion of the slices with either the selective CCK-2 receptor antagonist CR2945 (3 microm), or 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), 10 microm, a glutamatergic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptor antagonist. It is suggested that CCK modulates glutamate-GABA mechanisms by acting on CCK-2 receptors via volume transmission occurring at the level of the basolateral amygdaloid nucleus and/or by synaptic or perisynaptic volume transmission in the region of the rostrolateral main and paracapsular intercalated islands, resulting in subsequent disinhibition of the central amygdaloid nucleus and anxiety or panic-like behaviour.


Subject(s)
Amygdala/metabolism , Anxiety/physiopathology , Gastrins/metabolism , Nerve Endings/physiopathology , Nerve Net/physiopathology , Receptor, Cholecystokinin B/metabolism , Amygdala/drug effects , Animals , Anxiety/chemically induced , Anxiety/psychology , Avoidance Learning/drug effects , Electroshock , Excitatory Amino Acid Antagonists/pharmacology , In Vitro Techniques , Male , Maze Learning/drug effects , Microinjections , Motor Activity/drug effects , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, Dopamine D1/metabolism , Sincalide/administration & dosage , Sincalide/analogs & derivatives , Sincalide/pharmacology , Tetragastrin/administration & dosage , Tetragastrin/antagonists & inhibitors , Tetragastrin/pharmacology , gamma-Aminobutyric Acid/metabolism
4.
Eur J Neurosci ; 23(10): 2749-59, 2006 May.
Article in English | MEDLINE | ID: mdl-16817878

ABSTRACT

The intercalated islands, clusters of dopamine D1-rich GABAergic neurons, are interposed between the basolateral and central nuclei of the amygdala, and control the traffic of nerve impulses between these two structures. Metabotropic glutamate receptor 5- (mGluR5)-like immunoreactivity was studied by immunohistochemistry in this part of the amygdala and was found to be mainly restricted to the central and basolateral nuclei and to a lesser extent to the medial paracapsular intercalated islands. The role of the metabotropic glutamate receptor 5 in the modulation of anxiety has been studied in this region by microinjection of small volumes of the mGluR5 antagonist 2-methyl-6(phenylethenyl) pyridine (MPEP), with restricted diffusion from its injection site, into the rostral amygdala near the basolateral and central amygdaloid nuclei and the intercalated islands, and the behavior of the animals was evaluated using three non-conditioned models of anxiety. Anxiolytic-like effects were observed after MPEP administration in all tests used. In the White and Black Box test, MPEP (2 nmol per side) significantly increased the time spent in the white compartment of the box. In line with these results, MPEP (8 nmol per side) increased the exploration of the open arms of the Elevated Plus-Maze. Burying behavior latency was increased and burying behavior itself was decreased in the Shock-Probe Burying test. It is suggested that anxiolytic effects of MPEP may be mediated by blockade of mGluR5 in the basolateral and/or central amygdaloid nuclei, reducing glutamate transmission in the basolateral amygdaloid nuclei and glutamate output from the central amygdala.


Subject(s)
Anti-Anxiety Agents/administration & dosage , Anxiety/drug therapy , Behavior, Animal/drug effects , Pyridines/administration & dosage , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Amygdala/drug effects , Animals , Conditioning, Classical , Disease Models, Animal , Immunohistochemistry , Injections, Intraventricular , Microinjections , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5
SELECTION OF CITATIONS
SEARCH DETAIL
...