Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928053

ABSTRACT

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Subject(s)
Fish Diseases , Immunity, Innate , Phylogeny , Piscirickettsia , Piscirickettsiaceae Infections , Renibacterium , Salmo salar , Animals , Piscirickettsia/genetics , Immunity, Innate/genetics , Salmo salar/microbiology , Salmo salar/genetics , Salmo salar/immunology , Fish Diseases/microbiology , Fish Diseases/immunology , Fish Diseases/genetics , Piscirickettsiaceae Infections/microbiology , Piscirickettsiaceae Infections/immunology , Piscirickettsiaceae Infections/genetics , Piscirickettsiaceae Infections/veterinary , Renibacterium/genetics , Renibacterium/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Evolution, Molecular
2.
Rev. chil. infectol ; 41(1): 165-166, feb. 2024. ilus
Article in Spanish | LILACS | ID: biblio-1559666

Subject(s)
Acanthamoeba
3.
Microb Pathog ; 180: 106122, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094756

ABSTRACT

Piscirickettsia salmonis is one of the main pathogens causing considerable economic losses in salmonid farming. The DNA gyrase of several pathogenic bacteria has been the target of choice for antibiotic design and discovery for years, due to its key function during DNA replication. In this study, we carried out a combined in silico and in vitro approach to antibiotic discovery targeting the GyrA subunit of Piscirickettsia salmonis. The in silico results of this work showed that flumequine (-6.6 kcal/mol), finafloxacin (-7.2 kcal/mol), rosoxacin (-6.6 kcal/mol), elvitegravir (-6.4 kcal/mol), sarafloxacin (-8.3 kcal/mol), orbifloxacin (-7.9 kcal/mol), and sparfloxacin (-7.2 kcal/mol) are docked with good affinities in the DNA binding domain of the Piscirickettsia salmonis GyrA subunit. In the in vitro inhibition assay, it was observed that most of these molecules inhibit the growth of Piscirickettsia salmonis, except for elvitegravir. We believe that this methodology could help to significantly reduce the time and cost of antibiotic discovery trials to combat Piscirickettsia salmonis within the salmonid farming industry.


Subject(s)
Fish Diseases , Piscirickettsia , Animals , Anti-Bacterial Agents/pharmacology , Piscirickettsia/genetics , DNA Gyrase/genetics , Fish Diseases/drug therapy , Fish Diseases/microbiology
4.
Microb Pathog ; 174: 105932, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36473669

ABSTRACT

Renibacterium salmoninarum is one of the oldest known fish bacterial pathogens. This Gram-positive bacterium is the causative agent of Bacterial Kidney Disease (BKD), a chronic infection that primarily infects salmonids at low temperatures. Externally, infected fish may show exophthalmos, skin blisters, ulcerations, and hemorrhages at the base of the fins and along the lateral line. Internally, the kidney, heart, spleen, and liver may show signs of inflammation. The best characterized virulence factor of R. salmoninarum is p57, a 57 kDa protein located on the bacterial cell surface and secreted into surrounding fish tissue. The p57 protein in fish is the main mediator in suppressing the immune system, reducing antibody production, and intervening in cytokine activity. In this review, we will discuss aspects such as single nucleotide polymorphisms (SNPs) that modify the DNA sequence, variants in the number of copies of MSA genes, physical-chemical properties of the signal peptides, and the limited iron conditions that can modify p57 expression and increase the virulence of R. salmoninarum.


Subject(s)
Fish Diseases , Gram-Positive Bacterial Infections , Animals , Proteomics , Virulence/genetics , Bacterial Outer Membrane Proteins/genetics , Genomics , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology
5.
Arch Microbiol ; 204(10): 610, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36085198

ABSTRACT

Aliarcobacter butzleri (formerly known as Arcobacter butzleri) is an emerging food-borne zoonotic pathogen that establishes in vitro endosymbiotic relationships with Acanthamoeba castellanii, a free-living amoeba. Previously, we described that this bacterium acts as an endocytobiont of A. castellanii, surviving for at least 10 days in absence of bacterial replication. Thus, the aim of this study was to evaluate the ability of A. butzleri to survive as a long-term endosymbiont of A. castellanii for 30 days in two models of symbiotic interaction with A. castellanii: (i) endosymbiotic culture followed by gentamicin protection assay and (ii) transwell co-culture assay. The results allow us to conclude that A. butzleri is capable of surviving as an endosymbiont of A. castellanii for at least 30 days, without multiplying, under controlled laboratory conditions. In addition, in the absence of nutrients and as both microorganisms remain in the same culture, separated by semi-permeable membranes, A. castellanii does not promote the survival of A. butzleri, nor does it multiply. Our findings suggest that the greater survival capacity of A. butzleri is associated with their endosymbiont status inside A. castellanii, pointing out the complexity of this type of symbiotic relationship.


Subject(s)
Acanthamoeba castellanii , Arcobacter , Acanthamoeba castellanii/microbiology , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...